
XPL

From Wikipedia, the free encyclopedia

This article is about a dialect of the PL/I programming language. For the meaning of the
term and other uses, see XPL (disambiguation).

XPL is a programming language based on PL/I, and a portable one-pass compiler
written in its own language, and a parser generator tool for easily implementing similar
compilers for other languages. XPL was designed in 1967 as a way to teach compiler
design principles and as starting point for students to build compilers for their own
languages.

XPL was designed and implemented by William McKeeman and David B. Wortman at
University of California, Santa Cruz and James J. Horning and others at Stanford
University. XPL was first announced at the 1968 Fall Joint Computer Conference. The
methods and compiler are described in detail in the 1971 textbook A Compiler
Generator.

They called the combined work a 'compiler generator'. But that implies little or no
language- or target-specific programming is required to build a compiler for a new
language or new target. A better label for XPL is a Translator Writing System. It helps
you write a compiler with less new or changed programming code.

Contents
• 1 Language
• 2 Components

• 2.1 XCOM
• 2.2 ANALYZER
• 2.3 Runtime
• 2.4 SKELETON
• 2.5 XMON

• 3 Parsing
• 4 Applications
• 5 Current status
• 6 References
• 7 Bibliography
• 8 External links

Language
The XPL language is a simple, small, efficient dialect of PL/I intended mainly for the
task of writing compilers. The XPL language was also used for other purposes once it
was available. XPL can be compiled easily to most modern machines by a simple
compiler. Compiler internals can be written easily in XPL, and the code is easy to read.

https://en.wikipedia.org/wiki/XPL_(disambiguation)
https://en.wikipedia.org/wiki/XPL#External_links
https://en.wikipedia.org/wiki/XPL#Bibliography
https://en.wikipedia.org/wiki/XPL#References
https://en.wikipedia.org/wiki/XPL#Current_status
https://en.wikipedia.org/wiki/XPL#Applications
https://en.wikipedia.org/wiki/XPL#Parsing
https://en.wikipedia.org/wiki/XPL#XMON
https://en.wikipedia.org/wiki/XPL#SKELETON
https://en.wikipedia.org/wiki/XPL#Runtime
https://en.wikipedia.org/wiki/XPL#ANALYZER
https://en.wikipedia.org/wiki/XPL#XCOM
https://en.wikipedia.org/wiki/XPL#Components
https://en.wikipedia.org/wiki/XPL#Language
https://en.wikipedia.org/w/index.php?title=Translator_Writing_System&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fall_Joint_Computer_Conference
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Stanford_University
https://en.wikipedia.org/wiki/Jim_Horning
https://en.wikipedia.org/wiki/University_of_California,_Santa_Cruz
https://en.wikipedia.org/w/index.php?title=David_Wortman&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=William_McKeeman&action=edit&redlink=1
https://en.wikipedia.org/wiki/Parser_generator
https://en.wikipedia.org/wiki/One-pass_compiler
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/Programming_language

The PL/I language was designed by an IBM committee in 1964 as a comprehensive
language replacing Fortran, COBOL, and ALGOL, and meeting all customer and
internal needs. These ambitious goals made PL/I complex, hard to implement efficiently,
and sometimes surprising when used. XPL is a small dialect of the full language. XPL
has one added feature not found in PL/I: a STRING datatype with dynamic lengths.
String values live in a separate text-only heap memory space with automatic garbage
collection of stale values. Much of what a simple compiler does is manipulating input
text and output byte streams, so this feature helps simplify XPL-based compilers.

Components

XCOM

The XPL compiler, called XCOM, is a one-pass compiler using a table-driven parser and
simple code generation techniques. Versions of XCOM exist for different machine
architectures, using different hand-written code generation modules for those targets.
The original target was IBM System/360, which is a proper subset of IBM System/370,
IBM System/390 and IBM System z.

XCOM compiles from XPL source code, but since XCOM itself is written in XPL it can
compile itself – it is a self-compiling compiler, not reliant on other compilers. Several
famous languages have self-compiling compilers, including Burroughs B5000 Algol,
PL/I, C, LISP, and Java. Creating such compilers is a chicken-and-egg conundrum. The
language is first implemented by a temporary compiler written in some other language,
or even by an interpreter (often an interpreter for an intermediate code, as BCPL can
do with intcode or O-code).

XCOM began as an Algol program running on Burroughs machines, translating XPL
source code into System/360 machine code. Someone manually turned its Algol source
code into XPL source code. That XPL version of XCOM was then compiled on
Burroughs, creating a self-compiling XCOM for System/360 machines. The Algol version
was then thrown away, and all further improvements happened in the XPL version only.
This is called bootstrapping the compiler. The authors of XPL invented the Tombstone
diagram or T-diagram to document the bootstrapping process.

Retargeting the compiler for a new machine architecture is a similar exercise, except
only the code generation modules need to be changed.

XCOM is a one-pass compiler (but with an emitted code fix-up process for forward
branches, loops and other defined situations). It emits machine code for each statement
as each grammar rule within a statement is recognized, rather than waiting until it has
parsed the entire procedure or entire program. There are no parse trees or other
required intermediate program forms, and no loop-wide or procedure-wide
optimizations. XCOM does, however, perform peephole optimization. The code
generation response to each grammar rule is attached to that rule. This immediate
approach can result in inefficient code and inefficient use of machine registers. Such
are offset by the efficiency of implementation, namely, the use of dynamic strings
mentioned earlier: in processing text during compilation, substring operations are
frequently performed. These are as fast as an assignment to an integer; the actual
substring is not moved. In short, it is quick, easy to teach in a short course, fits into
modest-sized memories, and is easy to change for different languages or different
target machines.

https://en.wikipedia.org/wiki/Peephole_optimization
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Retargeting
https://en.wikipedia.org/wiki/Tombstone_diagram
https://en.wikipedia.org/wiki/Tombstone_diagram
https://en.wikipedia.org/wiki/Bootstrapping_(compilers)
https://en.wikipedia.org/wiki/O-code
https://en.wikipedia.org/w/index.php?title=Intcode&action=edit&redlink=1
https://en.wikipedia.org/wiki/BCPL
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/LISP
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Burroughs_B5000
https://en.wikipedia.org/wiki/IBM_System_z
https://en.wikipedia.org/wiki/IBM_System/390
https://en.wikipedia.org/wiki/IBM_System/370
https://en.wikipedia.org/wiki/IBM_System/360
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Code_generation_(compiler)
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Heap_(data_structure)
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/ALGOL
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Fortran
https://en.wikipedia.org/wiki/IBM

ANALYZER
The XCOM compiler has a hand-written lexical scanner and a mechanically-generated
parser. The syntax of the compiler's input language (in this case, XPL) is described by a
simplified BNF grammar. XPL's grammar analyzer tool ANALYZER or XA turns this
into a set of large data tables describing all legal combinations of the syntax rules and
how to discern them. This table generation step is re-done only when the language is
changed. When the compiler runs, those data tables are used by a small, language-
independent parsing algorithm to parse and respond to the input language. This style of
table-driven parser is generally easier to write than an entirely hand-written recursive
descent parser. XCOM uses a bottom-up parsing method, in which the compiler can
delay its decision about which syntax rule it has encountered until it has seen the
rightmost end of that phrase. This handles a wider range of programming languages
than top-down methods, in which the compiler must guess or commit to a specific
syntax rule early, when it has only seen the left end of a phrase.

Runtime

XPL includes a minimal runtime support library for allocating and garbage-collecting
XPL string values. The source code for this library must be included into most every
program written in XPL.

SKELETON
The last piece of the XPL compiler writing system is an example compiler named
SKELETON. This is just XCOM with parse tables for an example toy grammar instead
of XPL's full grammar. It is a starting point for building a compiler for some new
language, if that language differs much from XPL.

XMON

XPL is run under the control of a monitor, XMON, which is the only operating system-
specific part of this system, and which acts as a "loader" for XCOM itself or any
programs which were developed using XCOM, and also provides three auxiliary storage
devices for XCOM's use, and which are directly accessed by block number. The
originally published XMON was optimized for IBM 2311 disk drives (ca. 1964), and was
most efficient on those drives. XMON is about 50 percent efficient on IBM 2314 disk
drives (ca. 1965), and is significantly less efficient on subsequently introduced disk
drives, such as the IBM 3330 (ca. 1970), 3330-11 (ca. 1973) and 3350 (ca. 1975), and is
dramatically less efficient on devices with much larger larger track capacities, such as
the IBM 3390 (ca. 1989).

Converting XMON from its primitive use of NOTE, POINT and READ/WRITE disk
operations (with precisely 1 block per track, with the entire remainder of the track
being erased, hence wasted space) to EXCP and XDAP (with n blocks per track, where n
is computed from the target device's physical characteristics and can be significantly
greater than 1, and with no wasted space) yields a dramatic increase in disk utilization
efficiency, and a corresponding reduction in operating system overhead.

Although originally developed for OS/360, XMON (either the original NOTE, POINT and
READ/WRITE implementation; or the EXCP and XDAP enhancement) will run on
subsequently released IBM OSes, including OS/370, XA, OS/390 and z/OS, generally
without any changes.

https://en.wikipedia.org/wiki/Z/OS
https://en.wikipedia.org/wiki/OS/390
https://en.wikipedia.org/wiki/OS/360
https://en.wikipedia.org/wiki/Execute_Direct_Access_Program
https://en.wikipedia.org/wiki/EXCP
https://en.wikipedia.org/wiki/History_of_IBM_magnetic_disk_drives#IBM_2311
https://en.wikipedia.org/wiki/Top-down
https://en.wikipedia.org/wiki/Bottom-up_parsing
https://en.wikipedia.org/wiki/Recursive_descent
https://en.wikipedia.org/wiki/Recursive_descent
https://en.wikipedia.org/wiki/BNF_grammar
https://en.wikipedia.org/wiki/Lexical_analysis

Parsing
XCOM originally used a now-obsolete bottom-up parse table method called Mixed
Strategy Precedence, invented by the XPL team (although the officially released version
retains the MSP parser and does not include later-released "peephole optimizations"
and additional data types which were developed outside of the original implementation
team.) MSP is a generalization of the simple precedence parser method invented by
Niklaus Wirth for PL360. Simple precedence is itself a generalization of the trivially
simple operator precedence methods that work nicely for expressions like A+B*(C+D)-
E. MSP tables include a list of expected triplets of language symbols. This list grows
larger as the cube of the grammar size, and becomes quite large for typical full
programming languages. XPL-derived compilers were difficult to fit onto minicomputers
of the 1970s with limited memories.[1] MSP is also not powerful enough to handle all
likely grammars. It is applicable only when the language designer can tweak the
language definition to fit MSP's restrictions, before the language is widely used.

XCOM and XA were subsequently changed to instead use a variant of Donald Knuth's
LR parser bottom-up method.[2] XCOM's variant is called Simple LR or SLR. It handles
more grammars than MSP but not quite as many grammars as LALR or full LR(1). The
differences from LR(1) are mostly in the table generator's algorithms, not in the
compile-time parser method. XCOM and XA predate the widespread availability of Unix
and its yacc parser generator tool. XA and yacc have similar purposes.

XPL is open source. The System/360 version of XPL was distributed through the IBM
SHARE users organization. Other groups ported XPL onto many of the larger machines
of the 1970s. Various groups extended XPL, or used XPL to implement other moderate-
sized languages.

1. Indeed, using a hand-written LALR-like analyzer and a particularly efficient
"decomposition" procedure for the produced parsing tables, it was possible to
generate a parser for the entire XPL language on a 2 MHz Z80 microcomuter
which had only 48 kilobytes of internal memory (DRAM) and only 100 kilobytes of
external memory (floppy disk) running under CP/M. This version was completed in
1980. Porting to MacOS (9, later X) was subsequently completed.

2. This version was NOT released to the general community, hence it remains
proprietary to its authors, or to their institutions. Repeated requests for an SLR(1)
or an LALR(1) distribution of XPL have been ignored by its authors.

Applications
XPL has been used to develop a number of compilers for various languages and
systems.

• Stony Brook Pascal
• HAL/S , the language used for the Space Shuttle program
• MALUS, a system programming language used by General Motors to develop their

Multiple Console Time Sharing System
• New England Digital used a variant of XPL, called "Scientific XPL" for their ABLE

series computers, used for laboratory automation, computer networking, and
control of music synthesis hardware, starting in the mid-1970's

https://en.wikipedia.org/wiki/New_England_Digital
https://en.wikipedia.org/wiki/Multiple_Console_Time_Sharing_System
https://en.wikipedia.org/wiki/System_programming_language
https://en.wikipedia.org/wiki/HAL/S
https://en.wikipedia.org/wiki/CP/M
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/DRAM
https://en.wikipedia.org/wiki/Z80
https://en.wikipedia.org/wiki/SHARE_(computing)
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/LR(1)
https://en.wikipedia.org/wiki/LALR
https://en.wikipedia.org/wiki/SLR_parser
https://en.wikipedia.org/wiki/XPL#cite_note-2
https://en.wikipedia.org/wiki/LR_parser
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/XPL#cite_note-1
https://en.wikipedia.org/wiki/Operator_precedence
https://en.wikipedia.org/wiki/PL360
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://en.wikipedia.org/wiki/Simple_precedence_parser

Current status
XPL continues to be ported to current computers. An X86/FreeBSD port was done in
2000.[1]

References
• McKeeman, William Marshall; Horning, James J.; and Wortman, David B., A

Compiler Generator (1971), ISBN 978-0-13-155077-3. The definitive reference.

1. Bodenstab, Dave. "Dave Bodenstab's Home Page". Retrieved Feb 6, 2015.

Bibliography
• Alexander, W.G. and Wortman, D.B. "Static and Dynamic Charactersistics of XPL

Programs." IEEE Computer Nov 1975; 41-46.
• Ancona, Massimo, Dodero, Gabriella, and Durante, Ercole Luigi "Cross software

development for microprocessors using a translator writing system" Proceedings
of the 4th International Conference on Software Engineering 1979: 399-402.

• Kamnitzer, S.H. "Bootstrapping XPL from IBM/360 to UNIVAC 1100." ACM
SIGPLAN Notices May 1975: 14-20.

• Karger, Paul A. "An Implementation of XPL for Multics." SB thesis. Massachusetts
Institute of Technology, 1972.

• Klumpp, Allan R. "Space Station Flight Software: Hal/S or Ada?" Computer March
1985: 20-28.

• Leach, Geoffrey and Golde, Helmut. "Bootstrapping XPL to an XDS Sigma 5
Computer." Software Practice and Experience 3 (1973): 235-244.

• McKeeman, William M., Horning, James J. and Wortman, David B. A Compiler
Generator. Englewood Cliffs, NJ: Prentice-Hall, 1970.

• McKeeman, W. M., Horning, James J., Nelson, E.C., and Wortman, D. B "The XPL
compiler generator system." AFIPS Conference Proceedings: 1968 Fall Joint
Computer Conference. Washington DC: The Thompson Book Company. 1968: 617-
635.

• Sitton, Gary A., Kendrick, Thomas A., and Carrick, jr., A. Gil. "The PL/EXUS
Language and Virtual Machine" Proceedings of the ACM-IEEE Symposium on
High-level-language Computer Architecture Nov, 1973: 124-130.

• Slimick, John "Current Systems Implementation Languages: One User's View"
Proceedings of the SIGPLAN symposium on Languages for system implementation
Oct, 1971: 20-28.

• Storm, Mark W., and Polk, Jim A. "Usage of an XPL Based Compiler Generator
System" Proceedings of the 14th annual ACM Southeast Regional Conference Apr,
1976: 19-26.

• Wortman, D.B. "A roster of XPL implementations." ACM SIGPLAN Notices Jan
1978: 70-74.

External links
• The XPL Programming Language
• A Compiler Generator page at Amazon.com
• Scientific XPL for New England Digital Corporation's ABLE Series Computers

http://books.google.com/books?id=NuQFtwAACAAJ
http://www.amazon.com/Compiler-Generator-Automatic-Computation-McKeeman/dp/0131550772/ref=sr_1_1?s=books&ie=UTF8&qid=1359838077&sr=1-1&keywords=compiler+generator
http://home.roadrunner.com/~pflass/XPL/
http://home.roadrunner.com/~pflass/XPL/roster.html
http://bodenstab.org/
https://en.wikipedia.org/wiki/Special:BookSources/9780131550773
https://en.wikipedia.org/wiki/XPL#cite_note-3

