
Iron Spring Software PL/I Preprocessor 1

This is a description of beta version 0.1.5 of the Iron Spring PL/I preprocessor.
Users are invited to try it out and report any bugs found. Usual considerations in
using any early-release software apply.

The Iron Spring PL/I Preprocessor is a generalized processor, originally
developed to provide macro capabilities for the PL/I language, although it is also
suitable for other applications. It has minimal dependence on the input format,
and its macro language is a subset of PL/I.

ISPP can be downloaded from:

http://www.iron-spring.com/download

Report bugs to:

matlto:bugs@iron-spring.com/?Subject=ISPP

(success reports welcomed also)

Compatibility
The Iron Spring Preprocessor is based on the preprocessor language described

in the IBM PL/I for MVS & VM Language Reference, release 1.1 (SC26-3114-01).
Some additional features are based on those found in later IBM PL/I compilers.
Complete compatibility is not necessarily guaranteed. Some differences are
flagged by ►◄ in the text.

0.1.5 January 2022

matlto:bugs@iron-spring.com/?Subject=ISPP
http://www.iron-spring.com/download

Iron Spring Software PL/I Preprocessor 2

0.1.5 January 2022

Table of Contents
Compatibility..1
Input Format...3

Input text..3
Preprocessor Statements..3

Files..4
Preprocessor scan...4
Scope and type of identifiers......................................5
Preprocessor constants..6
Preprocessor expressions..6
Preprocessor Statements...7

List of preprocessor statements..............................8
DECLARE statement...9
ACTIVATE statement..10
DEACTIVATE statement.....................................10
%assignment statement..11
PROCEDURE statement.....................................12

Arguments...12
Arguments in preprocessor statements.......12
Arguments in input text..............................12

STATEMENT keyword...................................13
RETURN statement...13
Flow of Control..14

DO statement...14
Simple DO..14
Iterative DO..14

END statement..15
Procedure..15
DO-group..15

ITERATE statement..15
LEAVE statement..15
IF statement...16
null statement..16
GOTO statement...16
NOTE statement..17

Preprocessor builtin functions..................................18
COMMENT builtin..18
COMPILETIME builtin.......................................19
COUNTER builtin...19
DATE builtin..19
INDEX builtin..19
LENGTH builtin..19
QUOTE builtin..20
SUBSTR builtin...20
TIME builtin..20

Running the Preprocessor...21

Iron Spring Software PL/I Preprocessor 3

Input Format
Preprocessor input is one or more files, containing a mix of preprocessor

statements and input text. Preprocessor statements are indicated by a leading %,
and have a syntax described below. (►To allow use of % characters in input text,
code %%, which will cause one % to appear in the output and the following text
to not be scanned as a preprocessor statement).◄

Input text

Input text is relatively free form, within margins specified by the user. Text
contained in PL/I-style comments, delimited by /*...*/, and character strings,
delimited by “...” or ‘...’ is not eligible for replacement.

Preprocessor Statements

 Preprocessor statements are headed by a single % character and terminated
by a ‘;’. Statements are coded in a PL/I-like language and cause action to be
taken when generating the output from the input text. Actions may involve
replacing active identifiers with an arbitrary sequence of output characters,
including, excluding, or repeating portions of text, and so on. A Preprocessor
Procedure is a sequence of preprocessor statements which can be invoked as a
function.

Preprocessor statements can be placed anywhere in the input text and are
executed when the statement is encountered. Preprocessor procedures can be
placed anywhere in the input and are executed only when called, whether from
input text, a preprocessor statement, or another preprocessor procedure.
Preprocessor procedures return a value to the point of invocation.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 4

Files
The name of the primary input file is passed to the preprocessor on the

command-line. Conventionally this file may have the extension “.pli” or “.pp”. An
optional output insource file (“.ins”) lists all input as read, and any error
messages and %NOTEs generated. The preprocessor output is written to a file
(“.dek”) suitable for input to the Iron Spring PL/I compiler or other applications.

[►Currently the preprocessor is a stand-alone program not integrated with the
compiler. Also, at the present time, the input and output margins must be the
same. Output lines are limited to 100 characters, and the output will break on
suitable boundaries if necessary. These are temporary restrictions.]◄

The input file need not be a valid PL/I program.

Preprocessor scan
The Iron Spring PL/I Preprocessor reads the complete preprocessor input file. It

identifies all preprocessor statements and procedures, and compiles them to an
intermediate language. Following this it processes the input text, executes all
preprocessor statements as they are encountered, and copies the input text to
the output, replacing any active preprocessor identifiers. Preprocessor
statements may cause the scan to skip or repeat portions of input text.
Preprocessor procedures are executed when they are called, not when they are
defined.

The preprocessor scans the input text for active identifiers which may be
replaced in the output.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 5

Scope and type of identifiers
 A preprocessor identifier is up to 64 alphanumeric characters, the first must be
alphabetic (A-Z, a-z, #$@_)—case of identifiers is ignored.

Preprocessor identifiers declared outside of a preprocessor procedure have
global scope; that is, they are defined and potentially active throughout the
source program, including within procedures Preprocessor identifiers declared
within a procedure have local scope; they are defined only in the procedure in
which they are declared. Local and global identifiers may have the same name,
in which case the local declaration overrides the global. Declarations can be
placed anywhere in the source or procedure and declarations don’t have to
precede use.

Preprocessor identifiers are defined by a %DECLARE statement, which
specifies their type and optional replacement attributes.

Identifiers may be declared CHARACTER, FIXED, ENTRY, or BUILTIN.
CHARACTER data is are similar to PL/I VARYING CHARACTER variables with
no fixed length. ►This version of the preprocessor limits CHARACTER data to
4096 bytes.◄ FIXED data is similar to PL/I FIXED DECIMAL(5) data. BUILTIN
declares one of a number of preprocessor builtin functions. ENTRY declares a
preprocessor procedure, which may be defined elsewhere.

 Identifiers have the scan attribute RESCAN or NORESCAN. RESCAN means
that after replacement of the identifier the resulting text is again scanned for
replacement. This is repeated until no identifiers in the scanned text are replaced.
NORESCAN means that the resulting text is not scanned again after
replacement. RESCAN is the default. Identifiers may be marked eligible or
ineligible for replacement by the declaration, or by the %ACTIVATE and
%DEACTIVATE statements.

If RESCAN is in effect, there is no limit to the number of times the
resulting text can be rescanned, as long as at least one identifier is
replaced each time. It is possible that an infinite loop may occur. This is
compatible with the behavior of IBM preprocessors.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 6

Preprocessor constants
Preprocessor constants may be character strings up to 32K bytes, or optionally

signed fixed decimal integers of up to five digits.

Character strings can be delimited by either single or double quote characters
(‘ or “). The quotes must match. The quote character not used as a delimiter can
appear in the string. If the delimiter character is included in the string it must be
doubled (‘’ or “”).

Preprocessor expressions
Preprocessor expressions are combinations of operations upon character or

numeric literals or preprocessor variables.

Preprocessor expressions are similar to expressions in the full PL/I language.
Parentheses may be used to group operations, otherwise normal rules of
precedence apply. Operators of equal precedence group left to right.

Arithmetic operators are: unary operators + and -,
binary operators +, -, /,*
(exponentiation (**) not allowed.

All operands are converted to FIXED.

Relational operators are: binary operators <, <=, =, >=, >
¬<, ¬=, ¬>

If operands are different types, CHARACTER operands are converted
to FIXED

Logical operators are: unary ¬
binary operators &, |

All operands converted to BIT

Concatenation: ||
All operands converted to CHARACTER

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 7

Preprocessor Statements
Preprocessor statements, except within a preprocessor procedure, all begin

with %<keyword>, except assignment statements and the NULL statement, and
end with “;”. Statements may begin and end at any point in a line and may span
lines.

Preprocessor statements may be labeled, with one or more statement labels.
Statement labels are identifiers followed by ‘:’ preceding the statement.
Preprocessor procedures must be labeled. Other statements may be labeled to
allow them to be the target of a GOTO, LEAVE, or ITERATE. Labels are not
shown in the syntax definitions below.

►Any text preceding the opening “%” and following the closing “;”is treated as
input text. Comments within a preprocessor statement are ignored and not
copied to output, therefore:
“% /* This is a preprocessor comment */ ;”
will appear as a comment in the insource listing, but not appear in the output
text.◄

►The following “%” statements are not processed by the preprocessor, but are
copied unchanged to the output text: %PAGE; %SKIP[(n)]; %INCLUDE;
%REPLACE;◄

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 8

List of preprocessor statements

PREPROCESSOR STATEMENTS

%DECLARE (%DCL)

%ACTIVATE (%ACT)

%DEACTIVATE (%DEACT)

%assignment-statement

%PROCEDURE (%PROC)

%DO

%END

►%ITERATE◄

►%LEAVE◄

%IF - %THEN - %ELSE

%GO TO (%GOTO)

%null-statement

%NOTE

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 9

DECLARE statement

The %DECLARE statement defines a preprocessor identifier, establishes it as a
preprocessor variable, preprocessor procedure, or preprocessor builtin function,
and activates it for replacement.

The syntax is:

<declaration> ::= “%” “DECLARE” <identifier_list>
<attribute>
[“,” declaration…] “;”
 (DECLARE may be abbreviated DCL)

<identifier_list> ::= identifier |
“(“ identifier [,identifier…] “)”

<attribute> ::= “CHARACTER” | “FIXED” | “ENTRY” |
 “BUILTIN”

 (CHARACTER may be abbreviated CHAR)

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 10

ACTIVATE statement

The %ACTIVATE statement marks an identifier eligible for replacement, and
optionally changes its RESCAN status.

<Activate_statement> ::= “%” “ACTIVATE” <identifier>
[“SCAN” | “RESCAN”]
[“,” <identifier> [“SCAN” | “RESCAN”] …] “;”
 (ACTIVATE may be abbreviated ACT)

If SCAN or RESCAN is omitted, the default is RESCAN.

The %ACTIVATE statement takes effect when executed, and remains in effect
until the end of the program, or until it is canceled by a %DEACTIVATE statement
for the same identifier.

A %ACTIVATE statement for an active identifier has no effect, except possibly to
change its scanning status

DEACTIVATE statement

The %DEACTIVATE statement marks an identifier ineligible for replacement.

<Deactivate_statement> ::= “%” “DEACTIVATE” <identifier>
[“,” <identifier> …]
 (DEACTIVATE may be abbreviated DEACT) ;

The %DEACTIVATE statement takes effect when executed, and remains in
effect until the end of the program, or until it is canceled by an %ACTIVATE
statement for the same identifier.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 11

%assignment statement

The assignment-statement assigns a value to a preprocessor variable.

<assignment_statement> ::= <identifier> “=” <expression>
“;”

<identifier> is any preprocessor variable except a statement label.

The preprocessor expression <expression> is evaluated (see “Preprocessor
expressions” above), the result converted to the type of <identifier>, if necessary,
and assigned to the value of <identifier>.

[BIT values are converted to FIXED, 0=FALSE, 1=TRUE.]

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 12

PROCEDURE statement

Preprocessor procedures are functions which can be called from other
preprocessor statements, or through replacement of input text. A preprocessor
procedure begins with a %label: PROCEDURE statement and ends with
[%]END. At least one label is required on the PROCEDURE statement. A
preprocessor procedure must return a value, which may be FIXED or
CHARACTER, The syntax of the PROCEDURE statement is:

<Procedure_statement> ::= “%” <label> “:” [<label> “:”…]
“PROCEDURE”
[<parameter_list>] [“STATEMENT”]
“RETURNS” “(“ [“CHARACTER” | “FIXED”] “)” “;”
 (PROCEDURE may be abbreviated PROC)

<parameter_list> ::= “(“ <parameter>
[“,” <parameter> …] “)”

Preprocessor procedures cannot be nested.

Arguments

Arguments to preprocessor procedures are handled differently, depending on
whether the procedure is called from a preprocessor statement or from input text.
In all cases the number of arguments and parameters need not match. Missing
arguments are passed as the null character string or zero. Extra arguments are
ignored.

Arguments in preprocessor statements

When a preprocessor procedure is called from another preprocessor procedure
or statement, each argument can be an identifier, a FIXED or CHARACTER
constant, or an expression. An identifier argument will be passed by reference if
its type patches the corresponding parameter. In all other cases a dummy
argument will be created.

Arguments in input text

When a preprocessor procedure is called from input text each argument is a
character string, delimited by a “,” or a closing “)”. Blanks in arguments are
retained. Each argument is scanned for replacement and assigned to the
corresponding parameter.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 13

STATEMENT keyword

The STATEMENT keyword indicates that the procedure can be invoked from
input text as if it were a PL/I statement. Arguments can be assigned in the normal
fashion, or by name, or a mixture. For example a procedure declared as:

P: PROCEDURE(one,two,three) STATEMENT… ;

might be called as:

P ONE(a) TWO(b) THREE(c);

or:

P(a,c) TWO(b);

Which result in the same call.

Returned values of STATEMENT procedures replace all text between the
procedure name and the closing ‘;’, inclusive.

RETURNS keyword

The RETURNS keyword is required, and indicates what type of value the
procedure returns, FIXED or CHARACTER.

RETURN statement

A RETURN-statement exits a preprocessor procedure, and specifies the value
to be returned to the point of invocation. The syntax is:

<Return_statement> ::= “RETURN” “(“ <expression> “)” “;”

<expression> specifies the value to be returned. At least one RETURN-
statement must be present in a preprocessor procedure. <expression> will be
evaluated and. If necessary, converted to the RETURNS type for the procedure.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 14

Flow of Control

The %DO, %END, %LEAVE, %ITERATE, %IF, %THEN, %ELSE, null, and
%GOTO statements can be used to affect the sequence of processing.

DO statement

The %DO statement, together with the %END statement, delimits a
preprocessor DO-group, and optionally specifies repetition. The DO-group can
contain input text, listing control statements, and preprocessor statements. A DO
can either be a simple DO or an iterative DO, specifying repetition.

<Do_statement> ::= <simple_do> | <iterative_do>

Simple DO

<simple_do> ::= “%” “DO” “;”

Iterative DO

<iterative_do> ::= “%” “DO” <identifier> “=” <expression>

 [“TO” <expression> [“BY” <expression>] |

 “BY” <expression> [“TO” <expression>]] “;”

A DO-group can be used anywhere a single statement may appear, for example
as the preprocessor unit in a THEN or ELSE.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 15

END statement

A %END statement is used to terminate a preprocessor procedure or DO-group.

<end_statement> ::= “%” “END” [<identifier>] “;”

If present, <identifier> must be a statement label of a DO-statement or
PROCEDURE-statement. The optional <identifier> indicates which procedure or
DO-group is being ended, and one END can close multiple blocks.

Procedure

An END statement for a preprocessor procedure marks the end of the
procedure. A leading “%” is optional.

DO-group

An END-statement for a preprocessor DO-group marks the end of the group.
For a simple DO, the group is exited. For an iterative DO, control returns to the
group head to determine if further repetitions are required.

ITERATE statement

<iterate_statement> ::= “%” “ITERATE” [<identifier>]
“;”

LEAVE statement

►The %LEAVE statement exits its containing DO-group, or the group identified
by <identifier>. A LEAVE-statement must be contained in a DO-group. The
syntax is:

<leave_statement> ::= “%” “LEAVE” [<identifier>] “;”

<identifier> must be a label of a containing DO-statement. If <identifier> is
omitted, LEAVE terminates the immediately containing group.◄

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 16

IF statement

A %IF statement selects one of two paths of execution, depending on the value
of an expression.

<if_statement> ::= “%” “IF” <expression>
“%” “THEN” <preprocessor_unit_1>

[“%” “ELSE” <preprocessor_unit_2>] “;”

<preprocessor_unit_1> and <preprocessor_unit_2> can be any single
preprocessor statement, or a preprocessor Do-group, which may contain any
text.

<expression> is any expression which can evaluate to the equivalent of BIT(1),
where all bits zero = ‘0’B (false), and anything else = ‘1’B (true).

If the <expression> is true, <preprocessor_unit_1> is executed, and execution
continues with the statement following the If-statement.

If the <expression> is false, <preprocessor_unit_2 (if present) is executed. If the
expression is false and <preprocessor_unit_2> is not present, execution
continues following the IF-statement.

null statement

The null-statement has no effect; The syntax is:

<null_statement> ::= “%” “;”

The null statement may fill in for, for example, <preprocessor_unit_1> in an If-
statement.

GOTO statement

The %GOTO-statement causes the preprocessor to continue execution at
another point in the preprocessor input file.

<goto_statement> ::= “%” “GOTO” <identifier> “;”
(“GO TO” is an alternative for “GOTO”)

<identifier> must be a label of a preprocessor statement. This statement must
not be contained in a different procedure or DO-group than the GOTO.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 17

NOTE statement

THE NOTE statement generates a preprocessor message

<note_statement> ::= “%” “NOTE”
“(“ <message> [“,” <severity> “)” “;”

<message> is a preprocessor expression that resolves to a CHARACTER value
to be displayed as the text of the message.<severity> is an optional preprocessor
expression that resolves to a FIXED value indicating the error level assigned to
this message.

The <severity> should be 0, 4, 8, 12, or 16. Otherwise the results are undefined.
If the <severity> is omitted, zero is the default.

The following statement:

 if ¬parmset(three)
then note('Argument "three" missing',4);

Produces the following preprocessor message:

 34 *** NOTE 4, Argument "three" missing

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 18

Preprocessor builtin functions
The preprocessor has a number of builtin functions.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 19

Preprocessor builtin functions

 COMMENT

 COMPILETIME

 COUNTER

 ►DATE◄

 INDEX

 LENGTH

 SYSPARM

 QUOTE

 SUBSTR

 ►TIME◄

COMMENT builtin

The COMMENT builtin returns its argument as a CHARACTER value wrapped
in “/*” … “*/.

Examples:

 COMMENT(This is a comment);

returns:

/* This is a comment */;

and:

 %a = COMMENT(“I’m a comment, too”)

sets the preprocessor identifier “a” to the value:

 “/*I’m a comment, too*/”

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 20

COMPILETIME builtin

The COMPILETIME builtin returns the date and time the preprocessor began
execution as a CHARACTER value of length 18, as “dd MMM yy hh.mm.ss”

Example:

 x = COMPILETIME;

returns the value:

 x = 18 NOV 20 22.00.51;

(note that the string is not quoted and should be wrapped by the COMMENT or
QUOTE builtins.

COUNTER builtin

The COUNTER builtin returns a FIXED value that begins at 00001 and
increments by one each time it is called.

DATE builtin

►The DATE builtin returns a FIXED the current date when it is called, as a
CHARACTER value of length 8, as “HHMMSS”. (This is a VAX PL/I function)◄

INDEX builtin

The INDEX(x,y) builtin returns a FIXED value of the position in string “x” of a
substring “y”. If “y” does not occur in “x”, or either “x” or “y” has zero length, zero
is returned

LENGTH builtin

The LENGTH builtin returns the length of the character value of its argument.
FIXED arguments return 5.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 21

QUOTE builtin

The QUOTE builtin returns its argument as a CHARACTER value wrapped in
single quotes. If the argument contains single quotes they are each converted to
two single quotes.

Examples:

 QUOTE(This is a quote);

returns:

‘ This is a quote ‘;

and:

 %a = QUOTE(“I’m a quote, too”)

sets the preprocessor identifier “a” to the value:

 ‘I’’m a quote, too’

SUBSTR builtin

The SUBSTR(x,y,[z]) builtin returns a portion of the string value of argument “x”,
beginning at position “y”. The result continues through the end of “x”, or for “z”
characters.

SYSPARM builtin

The SYSPARM builtin returns a string value which was passed to the
preprocessor in the command-line argument -p. Contents and nterpretation of the
SYSPARM value is left to the user.

TIME builtin

►The TIME builtin returns the current time when it is called, as a CHARACTER
value of length 8, as “HHMMSSTT”. (This is a VAX PL/I function)◄

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 22

Running the Preprocessor
The command to run the preprocessor is:

ispp -li "-cn(^¬)" "-co(|)"
-m(m1[,m2[,m3[,m4]]])
-i include_dir -I
-p “sysparm string”
file1.pli -o file2.dek

• All arguments are optional except the input file (file1)

• ispp” is the preprocessor name, this should be the path to the appropriate
directory.

• file1.pli is the name of the input source file. The name format is arbitrary

• file2.dek is the name of the output file. The name format is arbitrary.

• -li is an option telling the preprocessor to produce an “insource” listing. If
this option is not specified a listing file containing only preprocessor
messages will be generated.

• -cn specifies the characters to be used for the logical NOT (¬)
character. The default is ‘AA’x, the ASCII character is
‘AC’x, other characters such as the caret (^-as shown)
can be used, up to four characters.

• -co specifies the characters to be used for OR. The default is ‘|’

• -m specifies the margins for the input and output files. m1 and m2 are the
input margins, m3 and m4 are output. If -m is omitted the defaults for both
are (1,100)

• -I directs the preprocessor to process include files. Without -I, the
%INCLUDE statements are passed thru to the compiler for processing.
This is a global option and is not specified on a file-by-file basis.
– supplies the direcorry for include files, defaults to “.”.

• -p specifies a user-defined string to be passed to the preprocessor program
through the builtin function SYSPARM. The format of this string is arbitrary,
and the interpretion is left to the user program.

• -V requests the preprocessor to display the current version and exit.

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 23

 No other options are valid at this time.

The directory “samp” contains the sample program as run by both IBM
VisualAge PL/I for windows and ISPP. The source is the same, win.LST and
win.DEK are the windows versions.

Currently ISPP is Linux-only. An OS/2 version should follow shortly.

ISPP can be downloaded from:

 http://www.Iron-Spring.com/download/

0.1.5 January 2022

Iron Spring Software PL/I Preprocessor 24

Changes for this release
Changes for version 0.1.5:

• The -m (margin) option can now be used to specify margins for the input
and output files.

• The I option directs the preprocessor to process include files.

• SYSPARM option and builtin function.

• Removed limits on maximum number of operands allowed in an
expression.

0.1.5 January 2022

	Compatibility
	Input Format
	Input text
	Preprocessor Statements

	Files
	Preprocessor scan
	Scope and type of identifiers
	Preprocessor constants
	Preprocessor expressions
	Preprocessor Statements
	List of preprocessor statements
	DECLARE statement
	ACTIVATE statement
	DEACTIVATE statement
	%assignment statement
	PROCEDURE statement
	Arguments
	Arguments in preprocessor statements
	Arguments in input text

	STATEMENT keyword

	RETURN statement
	Flow of Control
	DO statement
	Simple DO
	Iterative DO

	END statement
	Procedure
	DO-group

	ITERATE statement
	LEAVE statement
	IF statement
	null statement
	GOTO statement
	NOTE statement

	Preprocessor builtin functions
	COMMENT builtin
	COMPILETIME builtin
	COUNTER builtin
	DATE builtin
	INDEX builtin
	LENGTH builtin
	QUOTE builtin
	SUBSTR builtin
	SYSPARM builtin
	TIME builtin

	Running the Preprocessor
	Changes for this release

