COO3077151
Courant Mathematics and
Computing Laboratory
U.S. Department of Energy
The PL/I Programming Language
Paul Abrahams
Research and Development Report
Prepared under Contract EY76C023077
with the Office of Energy Research
Mathematics and Computing
March 1978
New York University
UNCLASSIFIED
Courant Mathematics and Computing Laboratory New York University
Mathematics and Computing COO3077151
THE PL/I PROGRAMMING LANGUAGE
Paul Abrahams
March 1978
U. S. Department of Energy
Contract EY76C023077
UNCLASSIFIED
This report is to appear as an article on the PL/I programming language in the Encyclopedia of Computer Science and Technology published by Marcel Dekker, Inc, ii
Table of Contents
INTRODUCTION..1
Syntactic Conventions...6
DATA TYPES..9
Arithmetic Types..9
String Types...11
Pictured Types...13
Pointers, Areas and Offsets..19
Files..20
Labels...22
Entries..23
Formats..24
Arrays...25
Structures...26
DECLARATIONS...29
Manifest, Explicit, Contextual, and Implicit Declarations..............29
Declarations of StatementNames..31
Attribute Consistency and Completeness.................................32
Standard and User Defined Defaults.....................................38
The LIKEAttribute...41
EXPRESSIONS, TYPE CONVERSION, AND ASSIGNMENT.............................43
Prefix and Infix Expressions...45
Builtin Functions..51
Type Conversion..64
Promotion..68
The AssignmentStatement...69
STORAGE TYPES..72
Static Storage...72
Automatic Storage..73
Controlled Storage...73
Based Storage..74
The ReferOption...77
LefttoRight Correspondence...79
Allocation in Areas..80
Parameter Storage..81
Defined Storage..82
Alignment..84
Initialization...86
PROCEDURES, SCOPES, AND ENVIRONMENTS.....................................88
iii
The RETURNStatement...90
Arguments and Parameters...91
Options..93
Recursion..94
The GENERICAttribute..95
Blocks and Scopes..96
Internal and External Scope..99
Entry Values and Environments...100
ONUNITS AND ONSTATEMENTS..102
The ONStatement, REVERTStatement, and SIGNALStatement..............105
Enablement and Disablement..108
Builtin Functions for ONConditions...................................109
Categorization of the ONConditions...................................110
OTHER STATEMENTS AFFECTING FLOW OF CONTROL..............................115
Conditional Statements..115
The DOStatement..116
The GOTOstatement..119
The STOPStatement and the NullStatement.............................121
FILES AND RECORD INPUTOUTPUT...122
File Attributes...122
File Opening and Attribute Determination..............................123
File Closing..127
Operations on Record Files..127
STREAM INPUTOUTPUT...135
Data Lists..137
ListDirected InputOutput..138
DataDirected InputOutput..140
EditDirected InputOutput..142
BIBLIOGRAPHY..150
EDITORIAL NOTES...NOTES1
Acknowledgement...NOTES1
Errata..NOTES1
About the Author..NOTES2
iv
INTRODUCTION
PL/I is a large and powerful multipurpose programming language. The intent of the designers of PL/I was to create a language that could be used in business and in scientific applications, as well as in systems programming applications such as writing operating systems. The original design was developed in 1963 by a committee of people drawn from IBM
and from SHARE, an IBM user group. For a long time the only important implementations of PL/I were those developed by IBM
on the 360 and 370 computers, and the implementation on the GE 645 at the MULTICS Project at MIT. However, during the early 1970's a number of other implementations arose. The implementation of PL/I by other organizations was given impetus by the development of a national and international standard for PL/I by a subcommittee of the American National Standards Institute, in conjunction with a similar subcommittee of the European Computer Manufacturers' Association.
The definition of Standard PL/I was formally released late in 1976, but the content of the standard was publicly known well before then. The standard itself was written in a novel manner as a set of algorithms, expressed in highly stylized English, for the operation of a hypothetical PL/I machine.
The version of PL/I described in this article is Standard PL/I.
The design of PL/I drew heavily on the major languages that existed in 1963: Fortran, Cobol , and Algol 60. The syntax of PL/I most resembles that of Fortran, but without 1
Fortran's rigid rules for program formatting. The notion of block structure was taken from Algol 60, while PL/I structures were taken from the record descriptions of Cobol. However, a great many features were added to PL/I that have no counter
part in its ancestor languages.
An example of a PL/I program is given in figure 1. A program is written as a sequence of external procedures , which are defined in such a way that they can be compiled separately and then linked together when the program is executed. Within an external procedure, there can be internal procedures.
In this example, there is one internal procedure, named GET_DIGRAM. Each procedure in the program constitutes a block, In addition, a block can be delimited by the PL/I statements BEGIN and END (as in Algol 60).
The internal procedure GET_DIGRAM communicates with the outer procedure DIGRAMS via arguments passed to GET_DIGRAM
by the CALL statement. From the viewpoint of GET_DIGRAM, these arguments appear as parameters and are listed in the PROCEDUREstatement .
The variables used in this program are given in the DECLAREstatements. In general, a variable (or other use of an identifier) is described by a set of attributes. Not all of these need be given in the DECLAREstatement; those that are not given are deduced through the application of a set of defaulting rules. In fact, defaulting is applied in a great many contexts within PL/I.
2
On account of its comprehensive nature, PL/I is a diffi
cult language to learn in its entirety. For that reason it was designed so that a user could learn just those parts of the language that he needed, and ignore the rest of it until the occasion arose to use some previously untried feature.
The extensive defaulting conventions were included, for a large part, to make it possible to write programs without having to learn about obscure and irrelevant attributes. For instance, one can write business programs in PL/I without ever realizing that the language includes complex numbers and an extensive repertoire of mathematical builtin functions.
Since Standard PL/I is intended to be implemented on a variety of machines, the standard provides that a number of characteristics of the language are implementationdefined.
For example, machines differ in their word lengths; therefore the maximum number of digits that need be carried in a floating point computation is left implementeddefined. In the description of PL/I given in this article, implementationdefined features of the language are referred to frequently.
As of this writing, a standard subset version of PL/I is under development by the American National Standards Insti
tute. The definition of this standard subset will probably be released by the time that this article appears. Moreover, an extension of the subset to include facilities for real time and concurrent programming is also under development by the same group.
3
Figure 1. A Sample PL/I Program
/*
THIS PROGRAM READS IN A TEXT AND COUNTS THE NUMBER OF TIMES
THAT EACH ALPHABETIC DIGRAM OCCURS. A DIGRAM IS A SEQUENCE
OF TWO ADJACENT CHARACTERS. FOR INSTANCE, THE DIGRAMS IN
'GRUNGE" ARE GR, RU, UN, NG, AND GE.
*/
DIGRAMS:
PROCEDURE OPTIONS (MAIN) ;
DECLARE COUNT(26,26) FIXED(4);
/* COUNT (I, J) GIVES THE CURRENT COUNT OF OCCURRENCES
OF THE DIGRAM FORMED FROM THE ITH LETTER AND
THE JTH LETTER.
*/
DECLARE ALPH CHARACTER (26) INITIAL
('ABCDEFGHIJKLMNOPQRSTUVWXYZ');
DECLARE (P1,P2) FIXED; /* ALPHABETIC POSITION OF LETTER */
DECLARE (L1,L2) CHARACTER(1) ;
/* FIRST AND SECOND LETTERS OF DIGRAM */
DECLARE DONE BIT(l) INITIAL ('0'B);
/* COMPLETION FLAG */
/* SET ALL ELEMENTS OF THE COUNT ARRAY TO ZERO */
COUNT = 0;
/* READ AND PROCESS DIGRAMS */
RDLOOP:
DO WHILE ('1'B);
/* DO FOREVER */
CALL GET_DIGRAM(L1,L2,D0NE);
IF DONE THEN
GO TO PRINT;
P1 = INDEX (ALPH, L1);
P2 = INDEX (ALPH, L2);
/* N.B. INDEX RETURNS ZERO IF LETTER NOT IN ALPHABET */
IF PI * P2 > 0 THEN /* DIGRAM IS ALPHABETIC */
C0UNT(P1,P2) =C0UNT(P1,P2)+1;
END RDLOOP;
/* PRINT THE RESULTS */
PRINT:
DO P1 = 1 TO 26;
DO P2 = 1 TO 26;
IF COUNT(P1, P2) > 0 THEN /* DIGRAM APPEARED */
PUT EDIT(SUBSTR(ALPH,P1,1) ,
SUBSTR(ALPH,P2,1), COUNT (P1,P2))
(SKIP,2 A(l), X(2), F(4));
END;
END;
4
STOP; /* END EXECUTION OF PROGRAM */
Figure 1. Continued
/*
INTERNAL PROCEDURE TO EXTRACT THE NEXT PAIR
FROM THE INPUT TEXT
/*
GET_DIGRAM:
PROCEDURE (L1,L2,FLAG);
DECLARE (L1,L2) CHARACTER(1); /* LETTER PAIR */
DECLARE FLAG BIT(l);
/* ENDOFDATA INDICATOR */
DECLARE CARD CHARACTER(80);
/* INPUT LINE IMAGE */
DECLARE POSN FIXED STATIC INITIAL(80);
/* CHARACTER POSITION IN INPUT
CARD */
DECLARE SYSIN RECORD INPUT FILE;
/* INPUT READ FROM FILE SYSIN */
ON ENDFILE (SYSIN)
/* WHEN INPUT EXHAUSTED */
GO TO INPUT_FINISHED;
IF POSN > 79 THEN DO;
READ FILE(SYSIN) INTO(CARD);
/* READ A CARD */
POSN =1;
/* PROCESS FROM START OF CARD */
END;
L1 = SUBSTR(CARD, POSN, 1);
L2 = SUBSTR(CARD, POSN+1,1);
POSN = POSN+1;
/* MOVE TO NEXT PAIR */
RETURN;
/* EXIT FROM THIS PROCEDURE */
/* COME HERE IF THE READ STATEMENT ENCOUNTERED AN END OF FILE */
INPUT_FINISHED:
FLAG = '1'B;
/* SIGNAL COMPLETION TO CALLER */
RETURN ;
END GET_DIGRAM;
END DIGRAMS;
5
Syntactic Conventions
A PL/I external procedure consists of a sequence of statements. With the exceptions of the IFstatement and the ONstatement, every statement is followed by a semicolon.
The program is presented in free field format, i.e., statements do not occupy a fixed position on the line. In fact, line boundaries are ignored altogether, so a statement can be split over several lines, or several statements can occupy a single line. With the exception of the assignment statement and the null statement, the type of a statement is indicated by the keyword with which it begins.
A statement, in turn, is written as a sequence of tokens each of which may be either a delimiter or a nondelimiter.
The types of tokens are:
Delimiters
Nondelimiters
operator
identifier
period
arithmetic constant
comma
string constant
left or right parenthesis
isub [discussed below]
colon
semicolon
text inclusion
Two adjacent nondelimiters must have at least one blank between them, and other than that adjacent tokens may have any number of blanks between them. For example the statement 6
DO IVAL = Q TO (A + 3);
could be written more compactly as
DO IVAL=Q TO(A+3);
but it could not be further condensed to
DOIVAL=QTO(A+3);
The last example is in fact a valid PL/I statement with an entirely different meaning. A comment may be used in any place where a blank can appear. A comment is written as the characters "/*" followed by a sequence of characters not containing "*/" , followed by "*/" , e.g.,
/* THIS IS A COMMENT */
An identifier consists of a letter followed by any number of letters, digits, and break characters "_" , e.g., POPE_LEO_THE_15TH. The syntax of most of the other kinds of tokens is discussed below.
A text inclusion has the form
%INCLUDE textname;
The textname refers to an externally stored piece of text, which replaces the text inclusion when the program is trans
lated. On account of the variation in operating environments on different machines, the interpretation of the textname is implementation defined. With this facility, it is possible to use the same version of a chunk of program in many differ
ent external procedures, even ones written by different programmers.
Keywords can be used as identifiers; in this respect PL/I differs from COBOL, which treats keywords as reserved words, 7
and from ALGOL, which uses a distinct typeface to represent them. For example,
IF IF THEN THEN = ELSE;
is a valid sequence of statements in PL/I. The first statement is an IF statement that tests the variable IF; the second is an assignment statement whose target is the variable THEN.
Most of the long key words can be abbreviated, e.g. , CTL for CONTROLLED or NOFOFL for NOFIXEDOVERFLOW. The names of some builtin functions can also be abbreviated.
There are three different kinds of PL/I statements that head groups of statements: the DO statement, the PROCEDURE
statement, and the BEGIN statement. For all three, the group is ended by an END statement. If a statement name is attached to the statement that heads a group, then the same statement name can also be attached to the END statement that terminates the group, thus indicating which statement is closed out by the END. A single END statement can close out more than one group, however, as the following example illustrates: ALEPH:
PROCEDURE;
...
DO;
...
BEIT:
BEGIN;
...
END BEIT;
...
END ALEPH;
The final END statement closes out both the leading PROCEDURE
statement and the DO statement that follows it.
8
DATA TYPES
The different kinds of data in PL/I can be classified into groups called data types, or simply types. The avail
able types are either aggregate types or scalar types. An aggregate is composed from simpler types, and can be either an array or a structure. Arrays and structures are discussed below. The scalar types can be grouped into printable and nonprintable types, sometimes known as computational and noncomputational. For each type, there can be variables and values of that type; for some types there can also be constants.
A constant associates a name with a single unchanging value, while a variable associates a name with a location where a value can be stored. The value of a variable is in general timedependent. Variables are introduced into the program by DECLAREstatements, e.g.,
DECLARE LETTER_SEQUENCE CHARACTER (15) VARYING; which declares the variable LETTER_SEQUENCE to have character strings of length from 0 to 15 as its values. However, a variable can be declared even though no DECLAREstatement is written for it (see "Declarations" below), and certain kinds of constants are also introduced through DECLAREstatements.
Arithmetic Types
The printable types consist of the arithmetic types and the string types. The arithmetic types are characterized by four kinds of attributes: the base (binary or decimal), 9
the scale (fixed or float), the mode (real or complex) and the precision. Since all combinations of base, scale, and mode are permitted, there are eight arithmetic types, pre
cision aside. The precision of a fixed type consists of a numberofdigits and a scalefactor; that of a float type consists just of the number of digits. For example, the type REAL FIXED DECIMAL(6,2) (the "(6,2)" indicates the precision) contains values of the form ±DDDD.DD, where the D's are decimal digits. If the scale factor is omitted, it is taken as zero. The binary types are similar, except that binary rather than decimal digits are used. The fixed and float types correspond to the fixed point and floating point arithmetic data available on most computers. FIXED is a generalization of the integer type found in a number of other programming languages, since the integer type does not provide for scaling. FLOAT corresponds to the real type of other languages. A notable feature of the float types is that they can be used to express the desired accuracy of a numerical computation independently of the word length of the computer carrying out the computation.
The type of an arithmetic constant is indicated by its form. A real fixed decimal constant consists of a sequence of decimal digits with an optional decimal point and sign, e.g., 17.76 . Fixed constants can be scaled; for instance, 78F4 has the value 0.0078, obtained by multiplying 78 by 104
A real float decimal constant consists of a real fixed decimal constant followed by an exponent part indicated by the letter E, 10
e.g., 4.832E+12. Binary constants are formed similarly, except that only binary digits are used, and the number is followed by the letter B, e.g., 10.1B or 11E16B (designating 3 × 1016). Complex constants do not exist as such; a complex constant is formed as the sum of a real constant and an imag
inary constant, e.g., 4+3I.
String Types
The string types are character and bit, each of which in turn may be varying or nonvarying . However, string values are sequences of characters or bits, and the varying and non
varying attributes are not applied to them. Each string type has a maximum length associated with it; for the nonvarying types, the actual length is always equal to the maximum length. For instance, the type CHARACTER(14) VARYING describes character strings whose length varies from 0 to 14 characters, while the type BIT(8) NONVARYING (NONVARYING is the default) describes bit strings that are always exactly 8 bits long.
A characterstring constant is written as a sequence of characters enclosed in single quotes, with internal quotes doubled, e.g.,
'THE FARMER''S DAUGHTER'
The null character string, which contains no characters, is written as ''. A bitstring constant is written as a sequence of binary digits enclosed in single quotes and followed by B, e.g., 'l0l00l'B; the null bit string is written as ''B. Bit strings can also be written in base4, base8, or base16
11
notation. For instance, '7400'B3 indicates the base8 (octal) constant 7400 (equivalent to '111100000000 ' B), while 'A81'B4
indicates a base16 constant. (The digit after the B indicates a power of 2.) This extended notation is not available for binary arithmetic constants. The onebit values '1'B and '0'B
are particularly useful, as they are the results returned by the PL/I comparison operators; '1'B represents true and '0'B
represents false.
When a string, either bit or character, is declared, the maximum length need not be given by a constant, so that the declaration
DECLARE NEWSTR CHARACTER(Kl+2);
is permissible. The expression Kl+2 must be welldefined at the time that NEWSTR is created. Strings that appear as parameters of procedures may have their maximum lengths given by *, e.g ,
DECLARE PARAM_3 CHARACTER(*);
In this case, the maximum length of PARAM_3 is determined by the argument corresponding to PARAM_3. Strings used as para
meters must have their maximum lengths given either by * or by an expression composed purely of constants; more general expressions are not permitted (but are not particularly useful in this context in any case).
12
Pictured Types
The pictured types are derived from similar types in COBOL, but are more general, A pictured type has an associated picture, e.g., 999V.99, that describes the appearance of the values of that type. The values are represented as character strings, and the semantics of PL/I are such that an implementation is actually obliged to store them that way. There are no constants of pictured type. Pictures can be used in inputoutput formats as well as in declarations; an example of the declaration of a pictured type is
DECLARE SALARY PICTURE '$$$,$$$V.$$' ;
A pictured type has a picture associated with it. The picture is given by a character string. Within the picture, parenthesized counts can be used to indicate repeated characters, so that the picture '$$$$$' can also be written as '(5)$'.
A picture can be either a character picture or a numeric picture. A numeric pictured type contains, in addition to the picture itself, a mode specification (either REAL or COMPLEX) .
Character pictures are rather simple. They consist of just the characters A, 9, and X. The character A stands for a letter or a blank; the character 9 stands for a digit or a blank; and the character X stands for anything. Character pictures are used to validate strings, i.e., to insure that they are in the proper form. Thus, if we have the declaration DECLARE STRING_TEST PICTURE '(3)AXX9';
we can assign to STRING_TEST values consisting of three letters 13
(or blanks) followed by any two characters followed by a single digit (or blank). If the assigned value does not have these characteristics, an error will be signalled.
A numeric picture is one that contains a character other than A, 9, or X. By this definition, a picture consisting of all 9's is a character picture rather than a numeric picture.
A numeric pictured type has an associated arithmetic type, which is determined by the form of the picture together with the mode. The picture itself is independent of the mode.
Thus if we have the declarations
DECLARE RPIC REAL PICTURE 'ZZZ';
DECLARE CPIC COMPLEX PICTURE 'ZZZ';
RPIC has an associated arithmetic type of REAL FIXED DECIMAL(3,0), while CPIC has an associated arithmetic type of COMPLEX
FIXED DECIMAL(3,0). (The associated arithmetic type is neces
sarily decimal.) If the picture contains either of the characters E or K, it is a float picture (i.e., its associated arithmetic type is float); otherwise, assuming it is numeric, it is a fixed picture. The associated arithmetic type can be thought of as specifying the meaning of the values, as distinct from the representation of the values. The meaning becomes important when pictured values are used in arithmetic operations.
When a numeric value is assigned to a pictured variable, the value is edited to conform to the picture. The characters in the picture determine how the editing is to be done, assuming that the value has already been converted to the associated 14
arithmetic type. Editing by means of a picture is illustrated by the following example: Suppose that the value 34.8 is to be edited using the picture S9999V.99. Then the pictured value will be +0034.80. In this example the S indicates an explicit sign, the 9's indicate explicit digits, the V indicates an implicit decimal point (used to align the numeric value with the characters of the picture) and the period is an insertion character. The meanings of the different picture characters are given in Table 1, and their use is illustrated in Table 2.
The I, R, and T characters represent digits with sign
overpunching, i.e., the sign of the entire value is combined with the digit to form a single character. Signoverpunching is the standard input convention for COBOL; on a keypunch, the characters are formed by punching both a sign (11row for , 12row for +) and a digit in a single column. Although CR and DB are two characters rather than one, the two characters always go together, and are used to indicate a negative quantity. CR stands for "credit" and DB for "debit".
The drifting characters $, Z, +, , and S are used to edit leading zeros into blanks. When a sequence of drifting charac
ters appears (they must all be the same one), the character drifts to the position to the left of the leading nonzero digit in the value, and the remaining positions to the left are blanked out. Any insertion characters within the blankedout positions are themselves blanked out.
The period is a true insertion character, in that its presence or absence has no effect on the value represented by 15
the picture. The period need not appear next to the V, even though the sequence "V." is often used. A single $, S, +, or
can be placed at the beginning or at the end of a picture, in which case it signifies an explicit insertion rather than a drifting position. For instance, the value 92 edited by the picture '(5)$V.$$S' yields the string '␢␢$92.00+'; in this case the S causes a sign to be inserted, and is not a drifting character.
Although pictures are ordinarily used to edit real values, they can be used to edit complex values also. When a variable is declared to be pictured and complex, the picture is used to edit both the real and imaginary parts of any complex value assigned to the variable, and the two parts are concatenated.
However, there is no way to use pictures to insert "I" into the edited representation of a complex number.
16
Table 1. Meaning of Picture Symbols
(a) Characterpicture symbols
A
alphabetic character
9
digit or blank permitted
X
anything permitted
(b) Numericpicture symbols
9
digit
Y
digit with zero mapped to blank
Z
digit with zerosuppression
$
drifting or inserted dollar sign
*
drifting asterisk (check protection)
+
drifting or inserted sign for positive values drifting or inserted sign for negative values S
drifting or inserted sign for all values
CR
credit symbol, inserted for negative values
DB
debit symbol, inserted for negative values
I
digit with positive value indicated by overpunch R
digit with negative value indicated by overpunch T
digit with sign always indicated by overpunch
.
inserted period
,
inserted comma
B
inserted blank
/
inserted slash
V
implied decimal point
E
start of exponent, E inserted
K
start of exponent, nothing inserted
17
Table 2. Examples of Numeric Pictures
Picture
Numeric Value
Pictured String
999
7
7
99V9
7
70
YY/YY/YY
760404
76/
␢ 4/
␢ 5
ZZZZ
23
␢␢
23
Z,ZZZ
123
␢␢
123
Z,ZZZ
1234
␢ 1234
Z.VZZS
1.6
1.6
Z.VZZ+
.03
␢␢
03+
ZV.ZZ+
0.03
␢ . 03+
ZZZZ$
2
␢␢
␢␢
2$
+ZZZZ$
2
+
␢␢
␢
2$
ZZ99
0
␢␢
00
$$V.$$
1.23
␢ $1.23
$$B$$$
2345
$2
␢ 345
$$B$$$
345
␢␢
$345
+++
6
␢ +6
6
␢␢
6
SSS
6
␢ +6
$***V.**
.07
$***.07
$***.V**
.07
$****07
$$$99CR
8
␢␢
$08
␢␢
$$$99CR
123
␢ $123CR
$$$99DB
123
␢ $123DB
999T
71
07A
999T
71
07J
I999
1776
A776
I999
1776
1776
ZZZR
71
71
ZZZR
71
7J
99.V999BKS99
123456
1.2346
␢ +04
V.99999E99
123
.12300E03
999V9F3
12345
0123
99999F2
12.34
01234
Note: A indicates 1 with positive overpunch.
J indicates 1 with negative overpunch.
18
Pointers, Areas and Offsets
The nonprintable types of data in PL/I are pointers, areas, offsets, files, labels, entries, and formats. A pointer can be thought of as the location of a piece of data; it resembles the ref (reference) notion of Algol 68. However, pointer variables in PL/I are untyped; that is, a pointer variable can contain a pointer to data of any type whatsoever. The only pointer constant is the null pointer, which does not point at anything and therefore does not compare equal to any pointer to an existing object. The null pointer is obtained as the value of the builtin function NULL of no arguments.
Pointers are used in conjunction with based variables, which act as templates for an area of storage. Based variables are discussed below.
An area is a region in which space for based variables can be allocated. Areas can be cleared of their allocations in a single operation, thus allowing for wholesale freeing.
Moreover, areas can be moved from one place to another by means of assignment to area variables, or through inputoutput operations. There is one area constant, the empty area, which is obtained as the value of the builtin function EMPTY
of no arguments. Assignment of the empty area to any area variable clears the area of its allocations. More precisely, the old value of the variable is destroyed (though a copy may exist elsewhere), and the new value is an area with nothing allocated in it. The declaration of an area specifies (at 19
least by default) an area size in implementationdefined units (bytes, words, etc.), e.g.,
DECLARE STRUCTURE_AREA AREA(2000);
When an area is moved, pointers to objects within the area lose their validity. Therefore, PL/I also provides offsets, which are pointers relativized to the origin of a given area.
When an area is moved, the offsets of the objects within the area remain unchanged. Conceptually, pointers and offsets are related by the equation
pointer = offset + area
but in an actual implementation that equation need not hold.
There is one offset constant, the null offset, which is obtained by converting the null pointer to an offset.
To make it easier to work with offsets, it is possible to declare an offset with an implicit area association (which can be overridden), e.g.,
DECLARE OFF_FROM_A3 OFFSET(A3);
DECLARE A3 AREA(300);
When OFF_FROM_A3 is referenced in a context where a pointer is required, the offset value in OFF_FROM_A3 is converted to a pointer relative to the area A3.
Files
A file is, conceptually, a port through which communication is established between the program and a dataset. A dataset, in turn, is a collection of information residing on an external 20
medium, accessible to the program only through inputoutput operations. During the course of execution of a program, a given file may be connected to different datasets , or to no dataset, at different times. Inputoutput operations reference a file, which must be connected to an appropriate dataset; the operations then take place on the dataset. A file connected to a dataset is said to be open; one not connected to a dataset is said to be closed.
The file itself is a file value; each file value is uniquely associated with a file constant, declared, for example, by
DECLARE FILECON FILE CONSTANT;
File variables are declared similarly, e.g., by DECLARE FILEVAR FILE VARIABLE;
If neither CONSTANT nor VARIABLE is specified in the declaration, the usual default is CONSTANT. Moreover, declarations of file constants are introduced implicitly in a number of contexts, so that in practice the programmer rarely needs to write these declarations. For instance, the PL/I statement PUT LIST(A,B);
causes the values of A and B to be written onto the dataset associated with the file named SYSPRINT (assumed since no other file was specified in the PUTstatement) . If no declaration is explicitly given for SYSPRINT, the declaration DECLARE SYSPRINT FILE CONSTANT;
21
is assumed. When the PUTstatement is executed, the file SYSPRINT is opened as a PRINT file (assuming it is not already open).
Labels
A label is a name attached to an executable statement so that control can be transferred to that statement by means of a GOTOstatement. A label value has two components: a designator (such as an address) of the statement named by the label, and an environment, which records the state of execution of the program at the time when the block containing the label was entered. The environment is necessary because the address by itself does not always provide sufficient information to deter
mine unambiguously the state of execution after a GOTOstatement has been carried out (see the section "Entry Values and Environ
ments" below).
Label constants are declared by the appearance of a label as a statementname , as in
BOOK_FOUND: VOLUME = FOLIO(J);
which declares BOOK_FOUND as a label constant. In fact, label constants cannot be declared in any way other than by their appearance as statementnames. Not all statementnames declare label constants, however; some of them declare entry constants and format constants. The type of constant declared by a statementname is determined by the type of statement to which it is attached. Label variables are declared using the attribute LABEL, e.g.,
22
DECLARE LABVAR LABEL VARIABLE;
A statementname can be written with one or more subscripts, and by this convention constant arrays of labels can be created.
For instance, if a block contains executable statements with the statementnames CASE(l), CASE(0), CASE(1), and CASE(2), the appearance of these statementnames constitutes a declaration of CASE as a constant array of labels, whose single subscript has a lower bound of 1 and an upper bound of 2 . It is quite permissible to attach several of these subscripted statement
names to a single statement, to give them in nonincreasing order, to attach them to statements also bearing nonsubscripted statementnames, or even to omit some index values from the set.
For instance, if CASE(0) were omitted from the above set, the set would still be valid, but a transfer to CASE(0) would be in error. Typically, an element of a constant array of labels is selected by a statement such as
GO TO CASE(CASE_NUMBER);
Entries
An entry is an entry point to a procedure (see "Procedures, Scopes, and Environments" below) treated as a datum. An entry constant is declared by the appearance of a statementname attached to a PROCEDUREstatement or an ENTRYstatement. For instance,
PROCESS_NAME: PROCEDURE(NAME,SPECS);
declares PROCESS_NAME as an entry constant, whose associated 23
value is the (single) entry point to the procedure headed by the PROCEDUREstatement. Entry values, like label values, carry environments with them. Entry variables and arrays of entry constants are available. A typical application of an entry variable arises in writing a procedure to integrate an arbitrary function; within the procedure, the function is declared as an entry variable (and a parameter) , and the actual function to be integrated is passed as an argument.
When an external procedure references an entry in another external procedure, then the first procedure must declare the second explicitly as an entry constant, as in DECLARE SEARCHVAL EXTERNAL ENTRY(CHARACTER(*)) RETURNS(FIXED);
The CONSTANT attribute is assumed by default in this case.
The procedure containing this declaration expects SEARCHVAL
to be an entry to an external procedure, whose expected argu
ment is a character string of unspecified length, and which returns a fixed value.
Formats
A format is used to specify the form of data on a dataset accessed through a stream file (see "EditDirected InputOutput"
below). A format constant is declared by the appearance of a statementname on a FORMATstatement, e.g.,
FMT3: FORMAT(SKIP,3A,X(M),A);
As with labels and entries, format variables and arrays of format constants are included in PL/I. Format variables 24
are declared using the attribute FORMAT, e.g., DECLARE FMTVAR FORMAT VARIABLE;
Since formats can contain references to variables, e.g., the M in the example FMT3 above, format values carry environments.
Arrays
Two types of aggregates are provided in PL/I: arrays and structures. An array is a collection of elements all having the same type; a particular member of the collection is selected using an appropriate sequence of subscripts. A structure, on the other hand, is a collection of elements having possibly different types; a particular member of the collection is selected by using an appropriate name as the selector. A powerful feature of PL/I is that it allows aggregates to be treated as data objects in most contexts, so that it is possible, for instance, to add two arrays in a single opera
tion, or to write a procedure that returns a structure as its value.
An array is characterized by a sequence of dimensions; the dimensionality of the array is the number of its dimensions.
Each dimension has a lower bound and an upper bound, and these can be arbitrary integers. For example, the declaration DECLARE MESH(100:100,200) FLOAT BINARY(40); declares MESH to be a twodimensional array. The first sub
script has lower bound 100 and upper bound 100, while the second has lower bound 1 (assumed since none is given) and 25
upper bound 200. When reference is made to an element of an array, the subscripts can be arbitrary expressions, as long as the values of those expressions can be converted to integers.
As with character strings, bounds can be given by expres
sions as well as constants. For an array parameter, a pair of bounds (not a single one) can be given by *. The * can also be used in a quite different sense to indicate a crosssection of an array. For instance, MESH(3,*) designates a onedimaisional array, with lower bound 1 and upper bound 200, consisting of those elements of MESH whose first subscript is 3. Any number of the subscripts in an array reference can be replaced by *'s; the dimensionality of the resulting array is the number of *'s.
Array variables take on array values . Array values can arise during the evaluation of an expression, e.g., when two arrays are added together. Aside from labels, entries, and formats, there are no array constants in PL/I.
Structures
A structure is a collection of named elements, each of which can itself be a structure. An example of a twolevel structure declaration is
DECLARE
1 EMPLOYEE_RECORD,
2 NAME,
3 FIRST CHARACTER(10) VARYING,
3 MIDDLE_INITIAL CHARACTER(1),
3 LAST CHARACTER(15) VARYING,
2 ID_NUMBER FIXED DECIMAL(9),
2 SALARY FIXED DECIMAL(7 ,2);
26
The number in front of each component is a level number. The structure as a whole is at level one. The members of the levelone structure are the leveltwo components; those of the leveltwo components are the levelthree components, etc.
It is possible to write structure declarations using nonconse
cutive level numbers, but there is always an equivalent structure using consecutive ones. In any event, the logical levels are always consecutively numbered.
The organization of a structured value is just like that of a structured variable. A structured value contains a number of components, and can be treated as a single object. For example, two structures can be added just as two arrays can be added. There are no structure constants.
The elements of a structure are referred to using qualified names, although abbreviated versions are permissible.
The fullyqualified names of the elements of the structure given above are:
EMPLOYEE_RECORD
(itself a structure)
EMPLOYEE_RECORD.NAME
(itself a structure)
EMPLOYEE_RECORD.NAME.FIRST
EMPLOYEE_RECORD.NAME.MIDDLE_INITIAL
EMPLOYEE_RECORD.NAME.LAST
EMPLOYEE_RECORD.ID_NUMBER
EMPLOYEE_RECORD.SALARY
Abbreviated versions of qualified names are obtained by leaving out any of the component identifiers other than the last one.
27
These abbreviated forms can be used as long as the result is not ambiguous, i.e., as long as it cannot refer to more than one object.
Arrays of structures and structures of arrays are possible, and can be nested to any depth. An example of such a nested structure is given by:
DECLARE
1 CAR (30),
2 COUNTRY_OF_ORIGIN FIXED DECIMAL(3),
2 DEALERS(40),
3 CITY CHARACTER(20) VARYING,
3 STATE CHARACTER(2),
3 COMPANY CHARACTER(30) VARYING;
In such a nested entity, dimensionality is inherited. Thus CITY is a twodimensional array since one dimension is inherited from CAR and the other from DEALERS. CITY(*,17) designates the array composed of the elements
CAR(l).DEALERS.CITY(17)
CAR(2).DEALERS.CITY(17)
...
CAR(30).DEALERS.CITY(17)
In writing a reference to an element of CITY or a similar object, the subscripts can be written in any position as long as they are in the right order. Thus CITY(*,17) could also have been written as CAR(*).CITY(17) or as DEALERS(*,17).CITY.
28
DECLARATIONS
A declaration associates a set of attributes with an identifier. The attributes specify the characteristics of the object denoted by the identifier, such as its data type.
Within an external procedure, a given identifier can be declared more than once, since the identifier can be declared in differ
ent blocks, or as a member of different structures, or both.
Nevertheless, each declaration of an identifier designates a distinct object having its own attributes. The rules for name resolution determine how an occurrence of an identifier is resolved to the appropriate declaration (see "Blocks and Scopes"
below).
Every occurrence of an identifier within an external procedure must have a corresponding declaration within that external procedure. Moreover, every declaration must have a complete and consistent set of attributes. To satisfy these principles, PL/I includes extensive conventions for defaulting declarations, i.e., for creating declarations that were not written in the program and for deducing attributes of incomplete declarations.
Manifest, Explicit, Contextual, and Implicit Declarations An identifier that is declared in a DECLAREstatement written by the programmer is said to be manifestly declared.*
* The term "manifest", though convenient, is not standard usage.
29
An identifier that is manifestly declared, or that appears in a parameter list, or appears as a statement name, is said to be explicitly declared. An identifier appearing in a parameter list may, but need not, be manifestly declared; an identifier appearing in a statementname must not be manifestly declared.
If an identifier appears in a procedure and no explicit declaration exists for that identifier, then a default declara
tion is created if possible. The default declaration is placed in the outermost block of the external procedure. If the identifier is used in such a way as to suggest what its attributes should be, it is said to be contextually declared; otherwise it is implicitly declared. For instance, if the identifier OUT has not been manifestly declared and the statement PUT FILE (OUT) LIST(VALX,VALY);
appears, then OUT will be contextually declared with the attri
butes FILE and CONSTANT. Similarly, if the identifier EXP has not been manifestly declared and the statement Y = EXP(A**2);
appears, EXP will be contextually declared with the attribute BUILTIN. A program is in error if it induces conflicting contextual declarations.
An implicit declaration is created for an identifier if it is declared neither explicitly nor contextually. In this case, the created declaration initially has no attributes, and all the attributes are added by default later on.
30
Declarations of StatementNames
The appearance of an identifier as a statementname completely determines its attributes. The data type of the identifier is determined by the kind of statement named, as well as whether or not the identifier is subscripted. If the named statement is an ENTRYstatement or a PROCEDUREstatement , the identifier acquires the attributes ENTRY and CONSTANT; if the named statement is a FORMATstatement the identifier acquires the attributes FORMAT and CONSTANT; and if it is any other statement the identifier acquires the attributes LABEL and CONSTANT. Moreover, if the statementname is sub
scripted, then the identifier acquires an appropriate DIMENSIONattribute.
The implied declaration of an entry constant cannot be fully constructed until the types of its parameters are known.
When the parameter types are known, the entry constant can be characterized completely. At that point the parameter speci
fications and the RETURNSattribute , if any, are added to the declaration. For instance, the statements
FN: PROCEDURE(A,B) RETURNS (CHARACTER(12) VARYING); DECLARE A CHARACTER(*);
DECLARE B POINTER;
...
END FN;
lead to the derived declaration
DECLARE FN ENTRY (CHARACTER(*),POINTER)
RETURNS CHARACTER(12) VARYING) CONSTANT;
31
Attribute Consistency and Completeness
The diagram of Figure 2 can be used to determine whether a set of attributes is consistent and complete, except for a few peculiar cases. In this diagram, the following conventions are followed:
1. Double lines indicate the definition of a term.
2. Rectangles indicate specific attributes. If a rectangle is dashed, it indicates an optional attribute.
3. Ovals indicate sets of attributes.
4. Horizontal lines indicate sets for which all (nondashed) elements must be present) .
5. Vertical lines indicate sets from which one alternative must be chosen.
A set of attributes is complete and consistent if it can be constructed from this diagram; it is consistent if it is a subset of a complete and consistent set.
The interpretation of this diagram is illustrated by the attribute set
INTERNAL VARIABLE AUTOMATIC ALIGNED POINTER INITIAL
Starting from the node "consistentset", a scope and a declara
tiontype must both be chosen. The scope can be either INTERNAL
or EXTERNAL; INTERNAL is chosen. The declarationtype can be a variable, a namedconstant, etc.; it is chosen to be a variable. In that case, the attribute VARIABLE must be present, as well as a storagetype and a datadeclaration. The storagetype is chosen to be a storageclass; the storageclass 32
33
34
35
is chosen to be AUTOMATIC. The datadescription may, but need not, contain DIMENSION; in this case it does not contain DIMENSION. The datadescription must also contain an alignment, chosen to be ALIGNED, and either a datatype with optional INITIAL, or STRUCTURE. In this case, INITIAL is present (the actual initial values are ignored). The datatype is chosen to be noncomputational. Of the alternatives for non
computationaltype, locator is selected; of the alternatives for locator, POINTER is selected. Thus the entire set of attributes is shown to be complete and consistent. (The order in which the attributes are given is immaterial.) Not all consistency violations are shown up by reference to this diagram. For example, the combination AUTOMATIC EXTERNAL
and the combination
STATIC LABEL INITIAL
are both invalid, but pass the test of the diagram. Specific auxiliary rules are needed in order to disallow these and similar cases. The requirement for completeness is relaxed for the case of file constants, i.e., declarations with the attributes FILE and CONSTANT; although the filedescriptionset must be consistent, it need not be complete.
Certain attributes either permit or require subspecifica
tion; these are listed in Table 3. For example, the BASED
attribute permits, but does not require, the subspecification of an auxiliary pointer (see "Based Storage" below) , while the 36
Table 3. Attributes Requiring or Permitting Subspecification A. Subspecification Required
Attribute
Required
Specification
CHARACTER
length
BIT
length
AREA
size of area
DIMENSION
dimensionality
RETURNS
type of returned value
PRECISION
numberofdigits, possible scalefactor
PICTURE
picture specification
GENERIC
generic specification
ENTRY with CONSTANT
parameter types
POSITION
position count
DEFINED
base variable
LIKE
likened variable
B. Subspecification Permitted
Attribute
Permitted
Subspecification
BASED
basing pointer
OFFSET
area
ENTRY with VARIABLE
parameter types
37
CHARACTER attribute requires the subspecification of a string length.
The ENTRYattribute and the RETURNSattribute themselves contain attribute sets as subspecifications . These attribute sets are known as descriptors, and must also be complete and consistent. The descriptors in the ENTRYattribute describe the parameters expected by a procedure, while the descriptors in a RETURNSattribute describe the value returned by a proce
dure.* To be complete and consistent, a descriptor must be derivable from the "datatype" node in the diagram of Figure 2, but may optionally contain the MEMBERattribute. The descriptor for a structure as a whole looks like the declaration of a structure variable with the identifiers left off, e.g., DECLARE GENFUNC ENTRY (
1 (*),
2 FIXED BINARY,
2 CHARACTER(30) VARYING);
Standard and User Defined Defaults
The PL/I defaulting rules specify how an incomplete but consistent set of attributes is to be completed. Although there is a standard set of defaulting rules, the DEFAULT
statement can be used to override them. The defaulting rules, whether standard or userdefined, consist of a predicate and a default attribute set. The predicate indicates a test to be applied to the attributes already present in the declaration
* Since procedures can accept structures as arguments and can return structures as values, the specification of a single parameter or of a returned value can contain more than one descriptor.
38
(or descriptor), while the default attribute set indicates additional attributes to be supplied provided that they are consistent with the ones already present. Inconsistency, in this case, is not an error; it simply means that the default is not applied.
The principal standard defaulting rules are: 1. Add the attributes FIXED, REAL, and BINARY. For instance,if FIXED alone is present, REAL and BINARY are added *
2. If the arithmetic attributes are present but no precision has been specified, add an implementationdefined precision whose subspecification depends on the arithmetic attri
butes already present.
3. If CHARACTER or BIT is present, assume NONVARYING.
4. If CHARACTER or BIT is present but no length has been specified, assume a length of 1. If AREA is present but no area size has been specified, assume an implementation
defined value for the area size. If POSITION is present but no count has been specified, assume a count of 1.
5 If neither VARIABLE nor CONSTANT has been specified, assume VARIABLE unless ENTRY or FILE is present. If ENTRY
or FILE is present by itself, assume CONSTANT. If ENTRY
or FILE is present along with other attributes, the default depends on what those other attributes are.
6 If FILE and CONSTANT, or ENTRY and CONSTANT, or CONDITION is present, assume that the scope is EXTERNAL; in all
other cases assume that it is INTERNAL.
* This rule differs from the one used in the wellknown IBM
implementation of PL/I.
39
7. If EXTERNAL is present, assume that the storage class is STATIC; in all other cases assume that it is AUTOMATIC.
8. If CHARACTER or BIT is present, assume UNALIGNED; otherwise assume ALIGNED.*
As a consequence of the defaulting rules, an implicitly declared identifier, which starts with an empty attribute set, will acquire the attribute set
REAL FIXED BINARY PRECISION (d1,0) VARIABLE INTERNAL
AUTOMATIC ALIGNED
Here d1, is the implementationdefined default numberofdigits for the attribute combination FIXED BINARY. Similar constants d2,d3, and d4 are specified for FIXED DECIMAL, FLOAT BINARY, and FLOAT DECIMAL.
The DEFAULTstatement contains a predicate and one or more default attribute sets. Declarations are completed by applying the usersupplied DEFAULTstatements in the order that they appear in the program, and then applying the system default rules. Unlike DECLAREstatements, DEFAULTstatements are order
dependent. A default attribute set is added if and only if the appropriate predicate is satisfied and none of the elements in the set leads to a conflict. The predicate can include both attributes and identifier ranges, indicated by the keyword RANGE. The predicate is formed as a boolean combination of attributes and ranges. RANGE(*) is satisfied by any identifier, but not by a descriptor. RANGE(al:a2) is satisfied by any
* This rule does not apply to structures. The alignment of a structure, if given explicitly, is passed down to all element
ary members of the structure unless a conflicting alignment is given at a lower level.
40
identifier starting with a letter between al and a2 inclusive, while RANGE(init) is satisfied by any identifier starting with init. For instance,
DEFAULT(RANGE(AB)|FLOAT & ¬BINARY) COMPLEX STATIC; applied to the declaration
DECLARE AB35 FIXED;
yields
DECLARE AB35 FIXED COMPLEX STATIC;
and applied to the declaration
DECLARE XYZ FLOAT DECIMAL;
yields
DECLARE XYZ FLOAT DECIMAL COMPLEX STATIC;
However, it has no effect when applied to
DECLARE AB35 REAL FIXED;
since COMPLEX conflicts with REAL. It also has no effect when applied to
DECLARE XYZ FLOAT BINARY;
since the predicate is not satisfied.
The LIKEAttribute
The LIKEattribute can be used to copy part of a structure declaration into another declaration. It is useful when a program uses many similarly organized structures. For instance, if a program includes the declarations
41
DECLARE
1 ASSEMBLY BASED,
2 NEXT_PART POINTER,
2 FIRST_COMPONENT POINTER,
2 DESCRIPTION,
3 PART_NUMBER PICTURE 'X(5)9',
3 COST FIXED DECIMAL(6,2) ;
DECLARE 1 GROUP(20) STATIC LIKE ASSEMBLY;
then the second declaration is equivalent to DECLARE
1 GROUP (20) STATIC,
2 NEXT_PART POINTER,
2 FIRST_COMPONENT POINTER,
2 DESCRIPTION,
3 PART_NUMBER PICTURE 'X(5)9',
3 COST FIXED DECIMAL(6,2);
The LIKEattribute causes copying of members only; attributes at the level of the LIKEattribute are not copied. In this example, a reference to GROUP(20).NEXT_PART requires that the qualifying identifier GROUP be included, since otherwise the reference would be ambiguous. This behavior is a general property of structures declared using the LIKEattribute.
42
EXPRESSIONS, TYPE CONVERSION, AND ASSIGNMENT
The kinds of expressions acceptable in PL/I are similar to those found in most higherlevel languages. These are: literal constants
references to variables and named constants
parenthesized expressions
function calls
prefix expressions
infix expressions
references to builtin functions
The only kinds of literal constants recognized are arithmetic constants and string constants. Other constants are obtained either as named constants, e.g., statementnames, or as the results of builtin functions, e.g., NULL. References to variables may have subscripts, pointer qualifications (see below), and name qualifications. An example of a reference with all three is
PT> X(I,J).B
Although the pointerqualifier symbol > looks like an operator it is not treated as one (see "Based Storage" below).
Parentheses are used within expressions in three ways: to designate subscripts of arrays, to designate arguments of functions, and to group components of expressions containing operators. When an expression containing operators, e.g., +
and *, is enclosed in parentheses, it is treated as a single 43
entity this is the usual convention in mathematical nota
tion. When a reference to a variable is enclosed in paren
theses, it is then treated as a general expression rather than as a variable. This rule only makes a difference in the context of a procedure call.
A function call has two parts: the reference to the function and the argument list. The function reference need not have the form of a single identifier, since functions can return entry values, can be subscripted, and can be members of structures. Function calls, subscripted references, and references to builtin functions all have the same syntactic form, so a knowledge of the relevant declarations is necessary in order to distinguish them. An example of a rather complex function call is
A.B(3)(I,'NEXT')(X)
In this case, A.B(3) is an element of an array of structures (or a structure of arrays) containing an entry value. That entry value designates a procedure that expects two arguments
in this case, I and the string constant 'NEXT' and itself returns an entry value. The entry value obtained from this second procedure is then applied to the argument X. A function expecting no arguments is called by using an empty argument list. Thus
NEXT_SUIT()
would call the procedure NEXT_SUIT with no arguments.
If E is a procedure that itself returns an entry value, then 44
F(E)
indicates that F is to be called with an argument consisting of the entry value associated with E, while
F(E())
indicates that F is to be called with an argument obtained by calling E as a function of no arguments. This convention is somewhat different from the one used in Algol 60 and many of its descendants.
Function calls are discussed in more detail under
"Procedures, Scopes and Environments" below.
Prefix and Infix Expressions
A prefix expression consists of an expression preceded by a prefix operator, while an infix expression consists of two expressions with an infix operator between them. When an expression contains a string of operators, the meaning is determined by the precedences of the operators. Those opera
tors with highest precedence are applied first, then those of next highest precedence, etc. The infix operators, grouped by precedence from high to low, are:
**
* /
+
||
= ¬= < > <= >= ¬< ¬>
&
|
Table 4 summarizes the meanings of the operators.
45
Table 4. PL/I Operators and Their Meanings
Infix Operators
**
exponentiation
*
multiplication
/
division
+
addition
subtraction
||
concatenation
=
equal
¬=
not equal
<
less than
>
greater than
<=
less than or equal
>=
greater than or equal
¬<
not less
¬>
not greater
Prefix Operators
minus
+
plus
¬
not
46
When a sequence of adjacent operators, all of the same prece
dence, appears, the operators are applied from left to right except in the case of **, which is applied from right to left.
Thus
A * B / C ** D** E
is interpreted as
(A * B) / (C ** (D ** E))
Prefix operators are always applied first unless they conflict with the ** operator; in that case the ** is applied first, so that
–
A ** 3
is interpreted as
(A ** 3)
even though
A * 3
is interpreted as
(A) * 3
There are five arithmetic operators in PL/I:
+ addition
subtraction
* multiplication
/ division
** exponentiation
In order to apply any of the first four, the operands must first be converted to a common base, scale, and mode according to the following rules:
47
Base:
binary if either operand binary, otherwise decimal Scale:
float if either operand float, otherwise fixed Mode:
complex if either operand complex, otherwise real The operands need not have the same precision, however. The rules for the results of these operations assume that there is a maximum value N for the numberofdigits of the result.
The "precision rules" then give the numberofdigits (and, for the case of fixed, the scalefactor) of the result.
They are arranged so that digits on the right are never thrown away except in the case of division, where it cannot be avoided. If the operands are float, then the numberof
digits of the result is the maximum of the numbersofdigits of the operands. Otherwise, assume that the two operands, which are necessarily fixed, have precision (p,q) and (r,s) respectively. The result precision (m,n) for the four opera
tions is given by:
+,m = min(N, max(pq,rs) + max(q,s) + 1)
n = max(q,s)
*
m = min(N,p+r+l)
n = q+s
/
m = N
n = Np+qs
Should the result value exceed the capacity of the result precision, the FIXEDOVERFLOWcondition is raised, indicating an error (see "ONUnits and ONStatements" below).
The situation with regard to exponentiation is somewhat more complicated. Suppose that the formula x ** y is being 48
computed. If either x or y is float, the result is float, and the result precision is that of p. If x is real and fixed, and y is a small integer constant, then the result is also real and fixed, and the precision of the result is given by:
m = (p + 1) * y l
n = q * y
In any other case where both x and y are real, the result is real. If either x or y is complex, the result is complex.
In certain cases, such as x real and fixed with a negative value and y not an integer, an error is indicated.
The comparison operators are:
=
equal
¬=
not equal
<
less than
>
greater than
<=
less than or equal to
>=
greater than or equal to
¬<
not less than
¬>
not greater than
The operators <= and ¬> are equivalent, as are the operators
>= and ¬<; ¬> and ¬< are included mainly for intellectual compatibility with COBOL, which uses the phrases NOT GREATER
and NOT LESS. All of the comparison operators return a onebit value: '1'B if the comparison is satisfied, and '0'B
if it is not. The equality and inequality comparisons can be applied to any type of data, although for most of the non
printable types both operands must have the same type. (The 49
only exception is that pointers can be compared to offsets.) The comparison operators that test for inequality cannot be applied to complex arithmetic data or to nonprintable data, but they can be applied to real arithmetic data, to pictured data, and to strings. The meanings of these operators applied to arithmetic data are the usual ones; a numeric pictured datum is treated as the numeric value that it repre
sents. When character strings of unequal length are compared, the shorter one is filled on the right with blanks to bring it to the same length as the longer one. The ordered comparisons are then done left to right on the basis of the implementation
defined collating sequence, which defines an order for the individual characters. For instance, the letters are ordered alphabetically and the digits numerically. Two character strings compare equal if they are identical after the shorter one has been blankfilled on the right. The ability to perform ordered comparisons of character strings is particu
larly useful in applications that involve sorting names.
Similar rules apply to bit strings: If two bit strings are of unequal length, the shorter one is filled on the right with zerobits prior to the comparison. If the strings differ, the comparison is done bitbybit from the left with the rule that a onebit is greater than a zerobit.
If the two operands of a comparison have different types, they are converted to a common type. If one has an arithmetic type, the other is converted to an arithmetic type. If neither has an arithmetic type, but one has a character type and the 50
other has a bit type, the bittype operand is converted to character.
The concatenation operator, "||", is used to put two strings together. For instance, the value of
'AVER' || 'AGE'
is the string 'AVERAGE'. If one operand is a bit string and the other is a character string, the bit string is converted to a character string (as it is for comparisons) .
There are also three logical operators:
&
and
|
or
¬
not
'&' and "|" are infix operators, while “¬” is a prefix operator, The operands of these operators are expected to be bit strings, so that if they have any other type, they are converted to bit strings.
Builtin Functions
PL/I includes a large variety of builtin functions. A list of these, together with a brief explanation of what each one does, is given in Table 5. Some of the more important builtin functions will now be described.
The first group of builtin functions deals with strings.
The descriptions of the functions will be given for character strings, but the definitions for bit strings are analogous.
The builtin function LENGTH(x) returns as its value the 51
actual length of the character string x. It is useful in two contexts: determining the length of a string passed as a parameter, and determining the current length of a varying string. In both of these cases, the declaration of the string does not provide enough information to determine the length.
The builtin function SUBSTR(x,y,z) is used to extract a portion of a string. x is the string, y is the position of the first character to be extracted, and z is the number of characters to be extracted. If z is omitted, all of the string starting with the character at position y. is extracted. The null string is a possible result. SUBSTR can also be used on the left side of an assignment. For example, given the statements
DECLARE CHAR8 CHARACTER(8);
CHAR8 = 'TOM JONES';
SUBSTR(CHAR8,2,5) = 'IM HA';
the resulting value of CHARS is 'TIM HANES '. A builtin function used on the left side of an assignment in this way is called a pseudovariable.
The builtin function INDEX(x,y) finds the first position within the string x where the string y occurs. If y does not occur at all within x, the value of INDEX is 0. For example: value of INDEX('SYNCOPATION', 'COP') = 4
value of INDEX('SYNCOPATION', 'COPE') = 0
The builtin function VERIFY (x,y) finds the first character in 52
Table 5. SUMMARY OF THE PL/I BUILTIN FUNCTIONS
In this table, descriptions of the various PL/I builtin functions are given. These descriptions are intended to indicate the intent of each function, and in some cases the principal restrictions on their arguments. In the descriptions of the functions, square brackets are used to indicate optional arguments.
1. ABS(x) the absolute value of x. If x is complex, the value is its modulus.
2. ACOS(x) the arc cosine of x. x must not be complex.
3. ADD(x,y,p,[q]) the sum of x and y with precision (p,q) or (p,0) if the result is fixed, and with precision (p) if the result is float.
4. ADDR(x) a pointer to the generation of x.
5. AFTER(sa,ca) the portion of the string sa that follows the first occurrence of ca within sa. If ca does not occur within sa, the value is the null string.
6. ALLOCATION(x) the number of generations of the controlled variable x that currently exist.
7. ASIN(x) the arc sine of x. x must not be complex.
8. ATAN(y[,x]) the arc tangent of y/x if x is given, and of y otherwise.
9. ATAND(y[,x]) the arc tangent in degrees of y/x if x is given, and of y otherwise. x and y must be real.
10. ATANH(x) the hyperbolic arc tangent of x.
53
Table 5. Continued
11. BEFORE(sa,ca) the portion of the string sa that precedes the first occurrence of ca within sa. If ca does not occur within sa, the value is the null string.
12. BINARY(x[,p[,q]]) the result of converting x to binary, with precision determined by p and q if one or both is given.
13. BIT(x,[le]) the result of converting x to bit, with length le if le is given.
14. BOOL(x,y,ca) the boolean function of x and y whose truth table is specified by the fourbit value ca.
15. CEIL(x) the least integer greater than or equal to x.
x must not be complex.
16. CHARACTER(sa[,le]) the result of converting sa to charac
ter, with length le if le is given.
17. COLLATE() the implementationdefined collating sequence, as a character string.
18. COMPLEX(x,y) the complex number x + i y.
19. CONJG(x) the complex conjugate of x.
20. COPY(sa,le) the string consisting of le copies of sa concatenated together.
21. COS(x) the cosine of x.
22. COSD(x) the cosine of x, with x given in degrees.
x must not be complex.
23. COSH(x) the hyperbolic cosine of x.
24. DATE() the current date, in the form yymmdd, where yy is the year, mm is the month, and dd the day.
54
25. DECAT(sa,ca,pa) a portion of the string sa. sa is partitioned into three pieces by the first occurrence of ca. The threebit string pa specifies which of the three pieces (before ca, ca itself, after ca) are to be concatenated to form the value of DECAT.
26. DECIMAL(x[,p[,q]]) the result of converting x to deci
mal, with precision determined by p and q if one or both is given.
27. DIMENSION(x,n) the number of elements in the nth dimension of the array x, defined as HBOUND(x,n)
LBOUND(x,n) + 1.
28. DIVIDE(x,y,p [,q]) the quotient of x and y with precision (p,q) or (p,0) if the result is fixed, and with precision (p) if it is float.
29. DOT(x,y[,p[,q]]) the dot product of x and y, with precision determined by p and q if one or both is given.
30. EMPTY() the empty areavalue.
31. ERF(x) the statistical error function of x.
32. ERFC(x) the complement of the statistical error func
tion of x.
33. EVERY(x) the value '1'B if every bit in x is a onebit, and '0'B otherwise. For this purpose, all scalarelements of x are converted to bit.
34. EXP(x) the exponential function of x.
35. FIXED(x, p[,q]) the result of converting x to fixed, with precision determined by p and, if it is given, q.
36. FLOAT(x,p) the result of converting x to float with precision (p).
55
37. FLOOR(x) the greatest integer less than or equal to x.
x must be real.
38. HBOUND(x,n) the upper bound of the nth dimension of the array x.
39. HIGH(le) a string of le copies of the highest character in the collating sequence.
40. IMAG(x) the imaginary part of the complex number x.
41. INDEX(sa,ca) the position within the string sa of the first occurrence of the string ca. The value is 0 if ca does not occur within sa.
42. LBOUND(x,n) the lower bound of the nth subscript of the array x.
43. LENGTH(sa) the length of the string sa.
44. LINENO(fn) the current line number (within a page) of the print file fn.
45. LOG(x) the natural logarithm of x.
46. LOG10(x) the logarithm to the base 10 of x. x must not be complex.
47. LOG2(x) the logarithm to the base 2 of x. x must not be complex.
48. LOW(le) a string of le copies of the lowest character in the collating sequence.
49. MAX(x1,x2,...,xn) the largest of the numerical values of the xi . The xi. must not be complex.
50.
MIN(x1,x2,...,xn) the smallest of the numerical values of the xi. The xi must not be complex.
51.
MOD(x,y) the value of x modulo y. x and y must not be complex.
56
52.
MULTIPLY(x,y,p[,q]) the product of x and y with preci
sion (p,q) or (p,0) if the result is fixed, and with precision (p) if it is float.
53. NULL() the null pointer.
54. OFFSET(pt,ar) the result of converting the pointer pt to an offset within the area ar.
55. ONCHAR() the leftmost erroneous character within the current ONSOURCEvalue . When the conversioncondition is raised, the current ONSOURCEvalue is set to the string whose conversion was being attempted, and it retains this value during the execution of the associated onunit.
56. ONCODE() an implementationdefined integer indicating the nature of the oncondition associated with the current onunit.
57. ONFIELD() the contents of an erroneous field encountered during datadirect input, causing the name condition to be raised.
58. ONFILE() the name of the file being processed when an inputoutput condition was raised.
59. ONKEY() the name of an erroneous key that caused the KEYcondition to be raised during record inputoutput.
60. ONLOC() the name of the procedure entrypoint active when the current onunit was raised.
61. ONSOURCE() the current onsourcevalue. When the CONVER
SIONcondition is raised, the current ONSOURCEvalue is set to the string whose conversion was being attempted, 62. PAGENO(fn) the number of the current page within the print file fn.
57
63. POINTER(ofe,ar) the result of converting the offset ofe within the area ar to a pointer.
64. PRECISION (x,p[,q]) the result of converting x to precision (p,q) or (p,0) if x is fixed, and to precision (p) if x is float.
65. PROD(x) the product of all the elements of the array x.
66. REAL(x) the real part of the complex number x.
67. REVERSE(sa) the bits or characters of the string sa taken in reverse order.
68. ROUND(x,n) the result of rounding up the numerical value of x. If x is fixed, the result has a scalefactor of n; otherwise the result has a numberofdigits of n.
n must be an integer constant.
69. SIGN(x) the value +1, 0, or 1 according to whether x is positive, zero or negative .
70. SIN(x) the sine of x.
71. SIND(x) the sine of x, with x given in degrees.
x must not be complex.
72. SINH(x) the hyperbolic sine of x.
73. SOME(x) the value '1'B if at least one bit in x is a onebit, and '0'B otherwise. For this purpose, all scalarelements of x are converted to bit.
74. SQRT(x) the square root of x.
75. STRING(sa) the result of concatenating together the scalarelements of sa after converting them to bit.
76. SUBSTR(sa,st[,le]) the substring of sa consisting of le characters or bits of sa beginning with the stth one.
58
Table 5. Continued
If le is omitted, the substring consists of the characters or bits from the stth one to the last.
77. SUBTRACT(x,y,p[,q]) the difference of x and y with precision (p,q) or (p,0) if the result is fixed, and with precision (p) if it is float.
78. SUM(x) the sum of all the elements of the array x.
79. TAN(x) the tangent of x.
80. TAND(x) the tangent of x, with x given in degrees.
x must not be complex.
81. TANH(x) the hyperbolic tangent of x.
82. TIME() the current time, in the form hhmmss where hh gives the hour, mm gives the minute, and ss...s gives the second carried to an implementationdefined number of fractional decimal places.
83. TRANSLATE(sa,ra[,pa]) the result of replacing, within sa, each character of pa by the corresponding character of ra. If pa is omitted, it is taken to be the collating sequence .
84. TRUNC(x) the result of truncating x to the nearest integer in the direction of zero. x must not be complex.
85. UNSPEC(x) the internal representation of x, as a bit string 86. VALID(sa) the value '1'B if the current value of the pictured variable sa conforms to the picture and '0'B
otherwise .
87. VERIFY(sa,ca) the position within the string sa of the first character or bit of sa that does not appear within ca .
ca thus behaves as a set rather than a sequence. If all characters or bits of sa occur within ca, the value of VERIFY
is 0.
59
the string x that is not a character of the string y. If all the characters of x appear in y, then the value of VERIFY is 0.
For example:
value of VERIFY('CABDRIVER','ABCDE') = 5
value of VERIFY('CEDE','ABCDE') = 0
The builtin function REVERSE(x) reverses its argument, so for example:
value of REVERSE('GALLOP') = 'POLLAG'
This function is useful in righttoleft scanning; the string to be scanned is reversed and then scanned left to right. The builtin function COLLATE() (the "()" indicates that COLLATE
is a function of no arguments) has as its value the implemen
tationdefined collating sequence, i.e., the string consisting of all acceptable characters ordered from least to greatest.
The builtin function COPY(x,n) creates n copies of the string x.
For example,
value of COPY('CHA',3) = 'CHACHACHA'
The arithmetic builtin functions enable the user to control the attributes of arithmetic results. These fall into two groups. First, there are builtin functions ADD, SUBTRACT, MULTIPLY, and DIVIDE that behave like the corresponding infix operators, except that the precision of the result is explicitly specified. For example,
MULTIPLY(Ml,M2,5,3)
produces a result whose precision is (5,3), and whose remaining attributes are determined by the attributes of Ml and M2.
60
Second, there are builtin functions FIXED, FLOAT, BINARY, and DECIMAL that convert their argument to the specified attribute with the specified precision. For instance, DECIMAL(M1,4,2)
converts Ml to fixed decimal with precision (4,2); the mode of the result is the mode of Ml.
The conversion builtin functions FIXED, FLOAT, BINARY, and DECIMAL can be used not only to convert among arithmetic types but also to convert from the string types. The rules for the conversion are discussed under "Type Conversion" below. There are further conversion functions REAL(x) which converts x to real type (and for a complex number, takes its real part); IMAG(x), which takes the imaginary part of the complex number x (and yields if x is not a complex number); and COMPLEX(x,y), which converts x and y to a common real type and then forms the complex number x + iy . For conversion to string types, the builtin functions CHARACTER(x,n) and BIT(x,n) can be used.
CHARACTER(x,n) first converts x to character type and then adjusts the length of the result to n either by truncating on the right or by filling on the right with blanks. BIT behaves similarly, either truncating or filling with zerobits. The second argument of either of these functions may be omitted, in which case no truncation or filling is done.
The mathematical builtin functions included in PL/I are listed in Table 6. With the exceptions indicated, they can accept arguments of any arithmetic type, including complex types. For some mathematical functions there is more than one 61
possible range for the result value, and the choice of principal value is specified in the table.
The function ATAN (arctangent) can accept either one or two arguments. The twoargument version is useful in converting rectangular coordinates to polar coordinates. If the rectangular coordinates are given by the pair (x,y), then ATAN(x,y) gives the corresponding polar angle in the range from π to +π . Since the value of the tangent function repeats every π/2 radians, the sign of y is needed to determine the correct value.
A number of the builtin functions fall into no particular category. The builtin function SUM(x) accepts an array as argument, and returns as value the sum of all the elements of the array. The builtin function PROD, for "product", behaves similarly. The builtin function DOT(x,y) expects its arguments to be onedimensional arrays both having the same bounds; it takes the mathematical dot product of x and y. The builtin function BOOL(x,y,z) takes as arguments two bit strings x and y of arbitrary length, and a third bit string z of length 4.
z determines a boolean function that is applied to x and y.
If z is the sequence b1b2b3b4 , then the function is defined by:
bit of x
bit of y
result
0
0
b1
0
1
b2
1
0
b3
1
1
b4
62
Table 6. Mathematical Builtin Functions
PL/I
Mathematical
Complex
Constraints on
Name
Description
Arguments?
Result R
(Principal Value)
— ———
―
—————————————
——————————
—————————————————
ABS
absolute value
yes
R ≥ 0
ACOS
arc cosine
no
0 ≤ R ≤ π
ASIN
arc sine
no
/2
π
≤R ≤ /2
π
ATAN1
arc tangent (one argument) yes
/2 < R <
π
/2
π
(real argument)
ATAN2
arc tangent of quotient
< Re(R) <
π
π
(two arguments)
(complex argument)
ATAND1
arc tangent of quotient
no
90 < R ≤ 90
in degrees (one argument)
ATAND2
arc tangent of quotient
no
180 < R ≤ 180
in degrees (2 arguments)
ATANH
hyperbolic arctangent
yes
COS
cosine
yes
COSD
cosine in degrees
no
COSH
hyperbolic cosine
yes
ERF
error function
no
ERFC
complement of error funcno
tion
EXP
exponential
yes
LOG
natural logarithm
yes
< Im(R)
π
≤ π
LOG2
Base 2 logarithm
no
LOG10
base 10 logarithm
no
SIN
sine
yes
SIND
sine in degrees
no
SINH
hyperbolic sine
yes
SQRT
square root
yes
Re(R) > 0 or
Re(R)=0 and Im(R) ≥0
TAN
tangent
yes
TAND
tangent in degrees
no
TANH
hyperbolic tangent
yes
63
The builtin function VALID can be used to check the validity of pictured data, i.e., to ensure that the value stored in a pictured variable fits the description given by the picture. VALID(x) returns '1'B if the pictured variable x contains a valid value, and '0'B otherwise. Invalid values can arise since an arbitrary character string can be read into or assigned to a pictured variable, and ordinarily no validity check is made at the time of reading or assignment.
The builtin functions EVERY and SOME are useful in testing properties of aggregates. EVERY(x) returns '1'B if its argument (after conversion to bit type, if necessary) consists entirely of onebits, and '0'B otherwise. SOME(x) , on the other hand, returns '1'B if its argument contains at least one onebit, and '0'B otherwise. For example, if A is an array of arithmetic type, then the expression A > 0 will be an array with a onebit in each position i where A(i) > 0.
Therefore EVERY(A>0) will return '1'B if all elements of A are greater than 0, while SOME(A>0) will return '1'B if at least one element of A is greater than 0.
Type Conversion
In PL/I it is possible to convert from any printable type to any other, although for certain values the conversion may be illegal. Conversions may be invoked either explicitly, using builtin functions such as FLOAT or CHARACTER, or implicitly in contexts such as operands of operators or arguments of functions. For instance, the concatenation 64
operator requires that its operands be strings of the same type (bit or character), so that the operands must be converted appropriately even if they are of arithmetic type. The text of a procedure defines the types of its parameters, and if the arguments of a procedure do not already have the expect
ed types, they too must be converted. In fact, PL/I provides implicit conversions in almost every context where conversion is possible.
The conversions among arithmetic types generally follow the principle of preserving the meaning of the converted value. For example, the result of converting the fixed value 7.3 to complex float decimal with precision (8) is
.73000000E+01+0I. In conversion to a fixed type when digits must be dropped, the result value is obtained by truncating towards 0, although in certain unusual cases an implementation may produce a slightly different result. When converting from real to complex an imaginary part 0 of is added, while when converting from complex to real the imaginary part is dropped.
The conversion between bit and character is straightfor
ward; zerobits correspond to the character "0", and onebits correspond to the character "1". A character string to be converted to bit type must consist entirely of these two characters, or an error is signalled specifically, the CONVERSIONcondition. It is possible for the programmer to modify the converted value so as to correct the error (see
"Categorization of the ONConditions" below).
65
The most complicated conversions are those between the string types and the arithmetic types. A character string is converted to a number by treating the string as the represen
tation of a number. Thus, given the statements DECLARE NUMV FIXED DECIMAL(5,2);
NUMV = '␢␢2.13E1␢';
the string '␢␢2.13E1␢' is converted first to the float value that it represents, and then to the fixed decimal value 21.30.
The blanks surrounding the number are always permissible.
An allblank value converts to zero. If the character string does not represent a valid number, then the CONVERSIONcondi
tion is signalled. As in the case of conversion from character to bit, it is possible for the programmer to correct the error.
Conversion from a number to a character string yields, in effect, the result of printing the number. Ordinarily that result includes leading blanks. For instance, the effect of DECLARE NUMV FIXED DECIMAL(4);
DECLARE CONV_RESULT CHARACTER(20) VARYING;
NUMV = 17;
CONV_RESULT = NUMV;
is to assign the string '␢␢␢␢␢17' to NUMV. In most cases the length of the resulting string is the numberofdigits after conversion (if necessary) to fixed decimal, plus three.
Three spare positions are needed in order to accommodate a possible sign, a possible decimal point, and a possible leading zero.
66
Conversion from an arithmetic value to a bit string is accomplished by first converting the arithmetic value to real fixed binary and then converting the integer part of the value to the corresponding bit string. For instance, convert
ing the value 12.6 to a bit string yields '00ll00'B, with an intermediate conversion from fixed decimal with precision (3,1) to fixed binary with precision (10,4), (The rules for obtaining the intermediate precision are somewhat complicated, but it can be seen that two digits to the left of the decimal point may require as many as six nonzero bits to represent their value.) Conversion from a bit string to an arithmetic type is accomplished by treating the bit string as a binary number, and then converting from that number to the desired type.
It is also possible to convert from pointer to offset, or vice versa, provided that an area is given. Thus if AR
is an area and P is a pointer, the expression OFFSET(P,AR) gives the result of converting P to an offset relative to AR.
Similarly, if OFS is an offset, POINTER(OFS,A) gives the result of converting OFS to a pointer relative to A. A pointer can be declared with an areareference, as in DECLARE AR2 AREA;
DECLARE O2 OFFSET(AR2);
In this case, O2 can implicitly be converted to a pointer, and the area AR2 is used in the conversion.
67
Promotion
The PL/I operators, and many of the builtin functions also, can be applied to aggregates as well as to scalars. When two aggregates of the same organization, i.e., two structures with equal numbers of components or two arrays of the same dimensionality, are used as the operands of an operator, the result also has that organization, and the result is formed by combining corresponding components of the operands.
For example, in
DECLARE A(3,4) FIXED BINARY;
DECLARE B(3,4) FIXED BINARY;
DECLARE C(3,4) FIXED BINARY;
A = B + C;
the assignment to A is accomplished by adding B(l,l) to C(1,1), B(l,2) to C(l,2), etc., to form a new array of sums with dimensionality (3,4). The array of sums is then copied into A.
In certain peculiar cases the temporary array containing the sum is actually needed, and it does not suffice simply to add the elements of B and C one by one and place the result directly in A.
It is also possible to combine scalars with structures, scalars with arrays, and structures with arrays. However, it is not possible to combine structures having different numbers of members, or arrays having different dimensionalities. A scalar is combined with a structure by promoting it to a similar structure, all of whose members have the same value as the scalar. Similarly, a scalar is combined with an array by 68
promoting the scalar to a similar array. The case of combin
ing a structure with an array is more complicated; first the original structure is promoted to an array of structures, and later each element of the original array is promoted to a structure. A simple instance of promotion is given by the expression A+1, where A is an array of arithmetic type. The value of this expression is obtained by creating an array of 1's, having the same dimensionality as A, and then adding this new array to A, element by element. The effect is just the same as adding 1 to each element of A.
The AssignmentStatement
The assignmentstatement contains a left side, which is a list of targets, and a right side, which is an expression.
Each of the targets designates a location capable of receiving a value. The statement is executed by evaluating the expres
sion and then storing its value, after appropriate conversion, into the location designated by each target, in order from left to right. For instance, the assignmentstatement A, B(I), C=l;
causes 1 to be stored into A, B(I), and C. The targets of an assignmentstatement may be variables or pseudovariables.
For instance, the assignmentstatement
SUBSTR(TEXT,I,LEN) = WORD;
stores the value of WORD into the indicated substring of TEXT
(after adjusting the size of the value to be LEN). Similarly, 69
IMAG(Z) = SIN(X);
causes the imaginary part of the (necessarily) complex vari
able Z to be set to the value of SIN(X) , while the real part of Z is left undisturbed.
Since the type of the value obtained from the right side of an assignmentstatement may disagree with the type of a target, promotion or conversion, or both, may be necessary.
If the target is a scalar, then the usual rules for scalar conversion are applied; the type of the target defines the type to which the value must be converted.
If the target is
a structure or array, then the value must be promoted to the type of that structure or array, by replicating elements as necessary.
Following the promotion, elementbyelement scalar conversion may be necessary. For instance, in the example DECLARE HVAR(30) FLOAT BINARY;
HVAR = 0;
the scalar value is promoted to an array of 30 fixed zeros.
Each of these is then converted to an appropriate float zero, and assigned to the corresponding element of the array.*
A variation on the assignmentstatement, called byname assignment, can be used to assign elements from one structure to another according to the names of the elements rather than according to their positions in the structure.
For instance, given the declarations
* In actual practice, the conversion is usually done before rather than after the promotion. The result is the same.
70
DECLARE
1
RED,
2
BLUE,
2
GREEN,
3
ORANGE,
3
WHITE,
2
BLACK,
2
GRAY ;
DECLARE
1
VIOLET,
2 BLACK,
2 WHITE,
2 GREEN,
3
ORANGE,
3
VIOLET,
2 TAN,
2 BLUE;
the effect of the assignmentstatement
RED = VIOLET, BY NAME;
is to perform the individual assignments
RED.BLUE = VIOLET.BLUE;
RED.GREEN.ORANGE = VIOLET.GREEN.ORANGE;
RED.BLACK = VIOLET.BLACK;
Those members not in common between the two structures are ignored. Byname assignment can be extended to accommodate expressions that involve structures.
71
STORAGE TYPES
PL/I provides a variety of ways to manage the storage of variables. Each variable has a storage type, which can be either parameter, defined, or a storage class. The parameter and defined storage types indicate that the variable is an alias, i.e., an alternate name, for storage that has already been obtained by other means. The storage classes provide different ways of allocating and freeing storage; the storage classes are static, automatic, controlled, and based. The storage type of a variable is determined by its declaration after all defaulting of declarations has been done; in most cases the default is the automatic type. The storage used to hold the value of a variable is called a generation. A generation can exist even though it is not currently associated with any variable.
Static Storage
The static storage class is the simplest one. When a variable is declared to be static, its generation is allocated at the start of program execution and remains allocated throughout program execution. When a static variable is declared within a procedure, the values of that variable are kept from one call of the procedure to the next. Even in the case of a recursive procedure, there is just one copy of the variable, and that copy is available at all levels of recur
sion. Static storage is much like the standard form of storage in FORTRAN.
72
Automatic Storage
Storage for an automatic variable is allocated on entrance to the block where the variable is declared, and freed on exit from that block. Whenever the block is entered, a fresh gener
ation is obtained for the variable. In practice it sometimes happens that values of automatic variables are retained from one block entrance to the next, but this behavior is not any
thing that the programmer can rely upon. When an automatic variable is declared within a recursive procedure, a new generation is created for each level of recursion, and remains associated with the variable at that recursion level until the recursion level is terminated. Automatic storage resembles the ordinary local storage of Algol .
Controlled Storage
Controlled storage is explicitly allocated and freed by the programmer using the ALLOCATEstatement and the FREEstate
ment. Each time the variable is allocated, a new generation for it is created and placed on a pushdown stack; each time the variable is freed, the generation at the top of the stack is destroyed. There is one such stack for each controlled variable, and the current value of the variable is always obtained from the generation at the top of the stack. In other words, the generations follow a lastinfirstout rule.
The values of string lengths and array dimensions in the declaration of a controlled variable can be given by expressions.
73
The expressions are evaluated when a new generation is allocated, and so the different generations need not all have the same sizes. For example, suppose that we are given the statements: DECLARE N FIXED;
DECLARE CONTV CHARACTER(N) CONTROLLED;
N = 5;
ALLOCATE CONTV;
CONTV = 'FIRST' ;
N = 7;
ALLOCATE CONTV;
CONTV = 'SECOND';
If CONTV has not been previously allocated, these statements will create a stack consisting of two generations. The genera
tion at the top of the stack will have length 7 and value
'SECOND␢' (the assignment adds a blank on the right) , while the other generation will have length 5 and value 'FIRST'.
Thus the current value of CONTV will be 'SECOND␢'. If the statements
FREE CONTV;
PUT LIST (CONTV);
are executed, then the generation at the top of the stack will be destroyed and CONTV will refer to the first generation.
Consequently the PUTstatement will cause FIRST to be printed.
Based Storage
Based variables are useful in creating linked data struc
tures, and also have applications in record inputoutput. A based variable does not have any storage of its own; instead, the declaration acts as a template and describes a generation of storage. In order to use the variable to refer to a 74
particular generation of storage, a pointer to that generation must also be provided. The pointer and the based variable, taken together, constitute a based reference. In many cases, the pointer is given implicitly rather than explicitly.
An example of a declaration of a based variable and a pointer is
DECLARE
1
ARRAY_ELT BASED,
2 ARRAY (10) FLOAT,
2 NEXT_ELT POINTER;
DECLARE AP POINTER;
ARRAY_ELT describes a generation of storage, namely, a struc
ture containing a float array and a pointer. The based reference
A > ARRAY(4)
designates a particular element within the ARRAY_ELT structure pointed at by the pointer AP , and if AP does not point at such a structure the reference is invalid. PL/I does not provide any mechanism for checking that a pointer is indeed pointing at a generation of the correct type, and so it is entirely the programmer's responsibility. The errors that result when a pointer points at an object of the wrong type can often be extremely difficult to track down.
The statement
ALLOCATE ARRAY_ELT SET(AP);
causes a generation matching the type of ARRAY_ELT to be created and also causes the pointer AP to point at that genera
tion. Thus, after this ALLOCATEstatement has been executed, 75
a reference to AP > ARRAY(4) will be valid. If subsequently the statement
FREE AP > ARRAY_ELT;
is executed (and the value of AP has not been changed in the meantime), the generation pointed at by AP will be destroyed, and subsequent references to that generation will be meaning
less.
In this example, the structure includes not only the array but also a pointer. That pointer can be used to form a list of arrays, each one pointing to its successor. An element is added to the head of the list by allocating it and setting its NEXT_ELT component to the previous list head.
Similarly, the head of the list is deleted by setting the new list head to the NEXT_ELT component of the old list head and then freeing the old list head. One of the main uses of based variables and pointers in PL/I is constructing lists such as this one. In order to end a list, a special null pointer is needed, and that pointer is provided by the NULL
builtin function.
It is inconvenient to have to write a pointer with every based reference. Therefore it is possible to declare an implicit pointer in the declaration of a based variable, e.g., DECLARE BFIX BASED (BFP) FIXED;
DECLARE BFP POINTER;
A reference to BFIX by itself is taken to mean BFP > BFIX.
Moreover, the statement
76
LOCATE BFIX;
is equivalent to
ALLOCATE BFIX SET(BFP);
and the statement
FREE BFIX;
is equivalent to
FREE BFP > BFIX;
The template given by a based variable can be applied to storage of types other than based. In order to obtain a pointer to a generation, the ADDR builtin function is used. ADDR(v) yields a pointer to the generation specified by v . As an example, the statements
DECLARE BCOMP FLOAT COMPLEX BASED;
DECLARE SCOMP FLOAT COMPLEX STATIC;
ADDR(SCOMP) > BCOMP = 2E0 + 3E0I;
cause the static variable SCOMP to be set to the value 2E0+3E0I.
The ReferOption
The string lengths and array bounds of a based variable can be specified by expressions as well as by constants. For example, the declaration
DECLARE BCS CHARACTER(M) BASED;
indicates that the length of BCS is given by the current value of M. When BCS is allocated, the generation that is created will have a length given by the current value of M, and when reference is made to BCS, the value of M must agree with the 77
length of the string in the generation referred to. If a number of generations, all corresponding to BCS , exist, it may be difficult to ensure that the current value of M is correct, since the generations may have different string lengths. In order to deal with this difficulty, PL/I allows the string length to be specified along with the string itself; both the string and the length are stored in a single structure, sometimes called a selfdefining structure. For instance, the structure
DECLARE
1 STRING_STRUC BASED(STP),
2 LEN FIXED,
2 NEXT POINTER,
2 STRING CHARACTER(LEN1 REFER(LEN));
DECLARE STP POINTER;
could be used to create a list of strings, each having a different length. When one of these structures is allocated, the length of the string is obtained as the current value of LENl, and at the same time the current value of LENl is auto
matically stored within the LEN component of the newly created generation. When one of these structures is referenced, the length of STRING is obtained from the LEN component of that structure. Both LEN and LENl are needed, for the following reason. Were LEN used without the socalled referoption, the allocation size would be taken from STP>LEN prior to the allocation, which would be either undefined or the string length of a previously allocated generation. On the other hand, were LENl used, it would then be necessary to reset it to LEN before referencing STRING, since otherwise the length 78
of STRING would not be correct.
A based variable may contain any number of referoptions .
These can be used to specify upper or lower array bounds as well as string lengths and area sizes.
LefttoRight Correspondence
It is often necessary to create data structures in which the elements do not all have the same type, as in the following example:
DECLARE
1 FLOAT_ELEMENT BASED(ELPTR),
2 ELTYPE FIXED, /* 1 FOR FLOAT */
2 NEXT POINTER,
2 VALUE FLOAT;
DECLARE
1 FIXED_ELEMENT BASED(ELPTR),
2 ELTYPE FIXED, /* 2 FOR FIXED */
2 NEXT POINTER,
2 VALUE FIXED;
DECLARE
1 CHAR_ELEMENT BASED(ELPTR),
2 ELTYPE FIXED, /* 3 FOR CHARACTER */
2 NEXT POINTER,
2 VALUE CHARACTER (24);
DECLARE ELPTR POINTER;
A list can be formed containing elements of all three kinds, storing a type code in ELTYPE in order to distinguish among them. In order to reference an element, it is necessary to specify either FLOAT_ELEMENT, FIXED_ELEMENT, or CHAR_ELEMENT
even before the type of the element is known, since a refer
ence to ELTYPE by itself is syntactically ambiguous. Therefore under certain conditions PL/I allows a reference to a component 79
of a based structure even when the variable in the reference does not agree with the generation being referenced. The primary condition is that the generation and the variable must agree up to that component, although there are further detailed requirements that are beyond the scope of this article. Based references satisfying this constraint are said to be in lefttoright correspondence, since they agree reading from left to right. Thus it is permissible to use FLOAT_ELEMENT.ELTYPE to refer to, and therefore to test, the type code stored in any one of the three kinds of elements.
Even if ELPTR is pointing at a generation having the type of CHAR_ELEMENT, the ELTYPE component of that generation can be referenced using FLOAT_ELEMENT.ELTYPE. Since ELTYPE is the first component of each element, the elements necessarily agree up to that component. Moreover, the NEXT components of the three kinds of elements can be referenced interchangeably since in each kind of element NEXT has type pointer and is preceded by an element having type fixed (with the remaining attributes defaulted identically in all cases).
Allocation in Areas
A based variable can be allocated in a specified area, as in the following example:
DECLARE BV FIXED BASED(P);
DECLARE A AREA(200);
ALLOCATE BV IN(A);
Since BV has been allocated in A, the OFFSET builtin function 80
can be used to convert P into an offset relative to A, as given by
OFFSET(P,A)
The allocation can assign a value directly to an offset variable, as in the example
DECLARE OFS OFFSET(A);
DECLARE BVl BASED(OFS);
ALLOCATE BVl IN(A);
Since BVl is based on OFS, the offset of BVl relative to A is assigned to OFS when the ALLOCATEstatement is executed.
Parameter Storage
A variable acquires the parameter storage type by virtue of its appearance in a parameter list of either a PROCEDURE
statement or an ENTRYstatement. The PARAMETER attribute can, but need not, be declared for a parameter; it is invalid to use that attribute for any other kind of variable. A parameter describes a generation of storage passed as an argument to the procedure that declares the parameter. Thus, allocation and freeing of the parameter is the responsibility of the procedure's caller. Since a parameter is allocated before the procedure declaring it is entered, the procedure itself cannot specify an initial value for the parameter. See "Arguments and Parameters" below for further information about parameters.
81
Defined Storage
The defined storage type, like the parameter storage type, is an alias. The declaration of a defined variable specifies a base item, which is a portion (or possibly all) of some other variable. The defined variable provides another way of referencing part or all of the storage occupied by the base item. The base item can be part of a variable having any storage type other than defined or based, and so circular defining is excluded.
There are three kinds of defining: simpledefining, isubdefining, and overlaydefining. The sort of defining that is in effect is determined by the relation between the defined variable and the base variable. Since defined variables are aliases, they are not allocated nor freed, nor are initial values specified for them.
An example of simpledefining is
DECLARE A(5,8) FIXED;
DECLARE ADEF(2:4) DEFINED(A(1,*));
ADEF is defined to consist of the elements A(l,2), A(l,3), and A(l,4). For simpledefining to be in effect, the attributes of the defined variable must agree with those of the base item, except that the array bounds of the defined variable may be more restrictive than the corresponding bounds of the base item. A major use of simpledefining is to specify portions of arrays that are to be passed as arguments to procedures.
82
Isubdefining is in effect when the base item contains special subscripts, known as isubs. These subscripts have the form 1SUB, 2SUB, etc. An example of isubdefining is DECLARE A (10,10) FIXED;
DECLARE ADEF(9,8) DEFINED(A(lSUB+1 , 2SUB+2)); A reference to an element of ADEF is translated into a refer
ence to an element of A by substituting the first subscript for 1SUB and the second subscript for 2SUB. For instance, ADEF(8,6) refers to A(9,8). The defined array need not have the same dimensionality as the base item. For example, in DECLARE B(30,30) FLOAT;
DECLARE BDIAG(30) DEFINED(B(1SUB,1SUB));
the onedimensional array BDIAG consists of the diagonal elements of the array B, while in
DECLARE C(15) POINTER;
DECLARE C2(5,3) DEFINED (C(3*(lSUB1)+2SUB)); the twodimensional array C2 is defined onto the onedimensional array C.
Overlaydefining is used in order to apply different descriptions to strings. For the purposes of overlaydefining, character data and pictures are together considered as characterclass data, while bit strings are considered as bitclass data. An example of overlaydefining is: 83
DECLARE CS CHARACTER(30);
DECLARE ODEF1(3) CHARACTER(5) POSITION(10) DEFINED(CS); DECLARE
1 ODEF2 DEFINED(CS) ,
2 OCSl CHARACTER(14),
2 OCS2 PICTURE '$$$V.$$'; /* 6 CHARACTER POSITIONS*/
The relationship between CS and ODEFl, and between CS and ODEF2, is illustrated in Figure 3. The POSITION attribute in the declaration of ODEFl indicates that the character sequence comprising ODEFl starts at character 10 of CS. ODEF(l) consists of characters 1014 of CS, ODEFl(2) of characters 1519 of CS, and ODEFl(3) of characters 2024 of CS. The treatment of ODEF2 is similar. In overlaydefining both the defined variable and the base item must consist entirely of unaligned data (see "Alignment" below) of the same class, but a string can be overlaid onto an array as well as the other way round.
Alignment
The declaration of a variable can specify an alignment, either ALIGNED or UNALIGNED. An aligned variable is stored so as to favor speed of access over space; typically, storage for an aligned variable is placed at a word boundary or other natural demarcation for the machine at hand. An unaligned variable is stored so as to favor space over speed of access, and is arranged in storage so as to minimize unused space.
The default alignment for nonvarying strings and for pictures is unaligned; for everything else it is aligned.
84
(a) Overlaying ODEFl onto CS
(b) Overlaying ODEF2 onto CS
Figure 3. Example of OverlayDefining
85
In most situations, the alignment of a variable has no effect on its behavior. The exception is that aggregates composed of unaligned strings and pictures are stored with all their components adjacent, i.e., as a sequence of adjacent characters (or bits, in the case of unaligned bit strings).
The sequence can then be used as a base item for overlay
defining.
Initialization
It is possible to specify an initialization for a vari
able, as long as its storage type is not an alias, i.e., is neither parameter nor defined. The initialization is specified using the INITIALattribute. For example, in the declaration DECLARE A(40) FIXED INITIAL((40)0);
the array A is initialized to all zeroes. The initialization can be specified by a single item, by a repeated item, or by a repeated list, which can itself contain items of these types.
Nesting to any depth is permitted. Thus
DECLARE B(20) FIXED INITIAL(2,3,(5)4,(3)(1,2)); causes the first 13 elements of B to be initialized to the sequence
2 3 4 4 4 4 4 1 2 1 2 1 2
For a multidimensional array, initializations are performed with the last subscript varying most rapidly. Thus DECLARE C(3,2) FIXED INITIAL(1,2,3,4,5,6);
86
causes the initializations
C(l,l) = 1
C(l,2) = 2
C(2,l) = 3
C(2,2) = 4
C(3,l) = 5
C(3,2) = 6
Initialization always takes place at the time of alloca
tion. Thus, for static variables, the initialization is performed at the start of program execution. For automatic variables, it is performed at each entrance to the declaring block. For controlled and based variables, it is performed when an ALLOCATEstatement for the variable is executed, and is applied to the newly allocated generation. Parameters and defined variables cannot be initialized with the INITIALattribute
87
PROCEDURES, SCOPES, AND ENVIRONMENTS
Textually, a procedure is a body of code, delimited by a PROCEDUREstatement at the beginning and an ENDstatement at the end. Associated with the procedure are one or more entry points, each of which provides a way of invoking some portion of the code contained within the procedure. The entry points are defined by the PROCEDUREstatement, as well as by any ENTRYstatements that appear within the procedure. The characteristics of an entry point include its name, the number and types of its parameters, and the type of its returned value, if any. Each entry point, in turn, defines an entry constant.
A procedure is called either by means of a function reference within an expression or by means of a subroutine reference within a CALLstatement. The procedure call itself consists of an entryvalued reference and an argument list, possibly empty. For instance, the procedure call F(X+3, 'INVALID') has an entryvalued reference F and an argument list consisting of the two arguments X+3 and
'INVALID'. The value of F must be an entry point of the procedure being called. Usually F is just the name of the procedure, but F could also be, for instance, an entry vari
able. An empty argument list for a function reference must be indicated explicitly by (). If an entry point returns a value, then it must be called by a function reference; other
wise it must be called by a subroutine reference.
88
An example of a procedure definition is:
P1:
P2: PROCEDURE(QVAL,SIZE) RETURNS(FLOAT BINARY); DECLARE QVAL FLOAT BINARY;
DECLARE SIZE FIXED DECIMAL(4);
DECLARE J FIXED BINARY;
DECLARE TOTAL FLOAT BINARY INITIAL(0);
DO J = 1 TO SIZE;
TOTAL = TOTAL + F(QVAL,J);
END;
RETURN(TOTAL);
P3: ENTRY(RVAL,RES,SIZE);
DECLARE RVAL FLOAT BINARY;
DO J = 1 TO SIZE;
RES = RES + F(RVAL,J);
END;
RETURN;
END P1;
This procedure has three entry points. P1 and P2 are synonymous (but do not compare equal), and are entry constants designating the entry point at the PROCEDUREstatement. Since that entry point returns a value (with attributes FLOAT BINARY), P1 and P2 can only be called as function references, i.e., as compon
ents of an expression. P3 is the entry constant naming the entry point starting at the ENTRYstatement. It does not return a value, and so P3 can only be invoked from a CALLstatement, e.g., by
CALL P3(A(2),B(2),22);
P2 has two parameters, namely, QVAL and SIZE, while P3 has three parameters, namely, RVAL, RES, and SIZE. As this example shows, the entry points need not have the same parameters, and if any parameters are in common, they need not appear in the same position. It is invalid to reference a parameter not associated 89
with the entry point actually used to enter a procedure. For instance, it is invalid to reference RVAL if the procedure is entered through P1 or P2.
The RETURNStatement
The RETURN statement is used to end execution of a proce
dure. It may have either the form
RETURN(expr);
or the form
RETURN;
If the procedure is called by a function reference, then the RETURNstatement must contain an expression. Conversely, if the procedure is called by a subroutine reference, then the RETURNstatement must not contain an expression.
When a RETURNstatement containing an expression is executed, the expression is evaluated. The value of the expression is then taken as the value of the function reference that called the procedure. If necessary, the value of the expression is converted to the type specified in the RETURNS
clause of the entry point where the procedure was entered.
A procedure can return an aggregate as well as a scalar.
Moreover, the returned type may have asterisks in its speci
fication, e.g.,
RETURNS(CHARACTER(*));
for an entry point that returns a character string of arbitrary length.
90
Execution of a RETURNstatement not containing an expres
sion ends execution of the procedure and causes control to return to the point of call. The ENDstatement of a procedure is treated as having an implicit RETURNstatement just in front of it, so that if control flows to the ENDstatement, execution of the procedure is terminated. It is an error to allow control to flow to the ENDstatement of a procedure that was called as a function reference.
Arguments and Parameters
An entry point of a procedure can have a sequence of parameters associated with it. A call on the entry point must include a corresponding sequence of arguments, which act as inputs to the procedure. If
(1)
the argument is a reference to a variable (possibly subscripted or namequalified) , and
(2)
the attributes of the argument agree with those of the parameter,
then the parameter becomes an alias for the argument, and assignments to the parameter affect the argument. In all other cases, the argument is considered to be a dummy. That is, when the call is made, a generation of storage the dummy is set aside for the argument, and the value of the argument is copied into that generation. If the type of the argument disagrees with the type of the parameter, the argu
ment is converted to the parameter type and the converted value is assigned to the dummy. The parameter is then an alias for 91
the dummy, and after the call is completed the dummy is discarded. Thus, assignments to a parameter that corresponds to a dummy argument have no effect at the point of call.
Constants and expressions are always passed as dummy arguments.
PL/I uses the callbyreference model of argument transmission, i.e., the location of the argument is passed to the procedure. The conventions for argument transmission are shown by the following example:
CALLER:
PROCEDURE
DECLARE X FIXED DECIMAL(5);
DECLARE Y FLOAT DECIMAL(7);
CALL CALLEE(X); /* X IS SET TO 12 BY THE CALL */
CALL CALLEE(Y); /* DUMMY CREATED, SO Y IS UNCHANGED
CALL CALLEE(24962); /* DUMMY CREATED */
CALL CALLEE((X); /* DUMMY CREATED SINCE (X) IS
AN EXPRESSSION */
CALL CALLEE(X+14); /* DUMMY CREATED HERE, TOO */
END CALLER;
CALLEE:
PROCEDURE (P);
DECLARE P FIXED DECIMAL(5); /* P IS THE PARAMETER*/
P = 12;
END CALLEE;
Array sizes, string lengths, and area sizes of parameters must be given either by constantvalued expressions or by asterisks. An asterisk size is used when the size of the 92
corresponding argument is unknown, or varies from one call to another. Thus a parameter declared as CHARACTER(*) will match an argument declared as CHARACTER(e) , where e is any expression
However, such a parameter will not match an argument declared as CHARACTER(e) VARYING.
Options
Implementationdefined information can be attached either to a PROCEDUREstatement or to the declaration of an entry constant by means of the OPTIONSattribute. A particularly common option (but not a universal one) is illustrated by PROCEDURE OPTIONS(MAIN);
where the MAIN option indicates that execution of the program is to start with this procedure. In general, the information given in an OPTIONSattribute affects the manner in which the procedure is compiled.
When a PL/I procedure references a procedure written in a different programming language, the OPTIONSattribute can be used to specify the language of that foreign procedure so that appropriate calling sequences can be compiled. For instance, DECLARE PRIMFN ENTRY(FLOAT) RETURNS(FLOAT)
OPTIONS(FORTRAN);
would describe a procedure written in Fortran to be called from a procedure written in PL/I.
93
Recursion
A PL/I procedure is permitted to call itself, either directly or indirectly. A procedure that calls itself is said to be recursive, and the RECURSIVE option must be specified on the PROCEDUREstatement of such a procedure.
An example of a recursive procedure is one that counts the number of nodes in a binary tree. Each node is represented as a based structure, and contains a value, a left son, and a right son. Each son is either itself a pointer to a binary tree, or null. The procedure in PL/I is:
COUNTNODES :
PROCEDURE(NODEPTR) RECURSIVE RETURNS(FIXED); DECLARE(LCOUNT,RCOUNT) FIXED INITIAL(0);
DECLARE
1 NODE BASED (NODEPTR),
2 LEFT_SON POINTER,
2 RIGHT_SON POINTER,
2 VALUE FIXED;
DECLARE NODEPTR POINTER;
DECLARE NULL BUILTIN;
IF LEFT_SON ¬= NULL THEN
LCOUNT = COUNTNODES(LEFT_SON);
IF RIGHT_SON ¬= NULL THEN
RCOUNT = COUNTNODES(RIGHT_SON);
RETURN(LCOUNT+RCOUNT+1);
END COUNTNODES;
The procedure is given a pointer to a binary tree as an argument, and it returns the number of nodes in the tree as its value. Recursiveness is a property of a procedure rather than of its entry points, so that even if the recursive call is on a different entry point, the procedure is still considered to be recursive.
94
The GENERICAttribute
Often it is useful to create a family of entry points that perform a similar function but that expect somewhat different arguments, and to assign a single name to the family. The GENERICattribute allows a single name, known as a generic function, to be used for such a family of entry points; the choice of entry points then depends on the nature of the argu
ments. The GENERICattribute specifies a list of entrypoint names, and associates a sequence of generalized descriptors with each name. A reference to the generic function is translated into a reference to the first entry point whose descriptors, as given by the GENERICattribute, match the arguments of the generic function. An asterisk indicates a descriptor that matches anything. The test for descriptor matching is satisfied if the descriptor in the GENERICattribute is contained in the attribute set of the argument; the attribute set can contain attributes not in the descriptor. Only data attributes can be tested in this way.
An example of a GENERICattribute is
DECLARE GF GENERIC (Gl WHEN (FIXED, FIXED),
G2 WHEN (FIXED, *),
G3 WHEN (*));
Using this declaration, and assuming the further declarations DECLARE X FIXED BINARY;
DECLARE Y FLOAT DECIMAL;
the reference
95
GF(X,X+1)
translates to G1(X,X+1)
The reference
GF(X,Y+1)
translates to G2(X,Y+1)
since the expression Y+1 has data type float. The reference GF(X)
translates to G3(X)
since the first two descriptor sequences each require two arguments.
Another application of the GENERICattribute is illustrated by the declaration
DECLARE VARFN GENERIC(NFl WHEN (FLOAT(1:20) BINARY), NF2 WHEN (FLOAT (21:40) BINARY),
NFS WHEN (*));
In this case, the entry point represented by VARFN is selected on the basis of the precision of the argument, which is assumed to be float binary. If the argument has from 1 to 20 binary digits, NFl is used; if the argument has from 21 to 40 binary digits, NF2 is used; and if the argument has more than 40
binary digits, NF3 is used.
Blocks and Scopes
A block consists of a sequence of statements, starting with a PROCEDUREstatement or a BEGINstatement and extending to the matching ENDstatement. Blocks of either kind can be nested. The primary effect of the block structure of a program is to define the scope of a name, i.e., the set of statements from which the name can be referenced. A name declared in a 96
DECLAREstatement belongs to the innermost block containing that DECLAREstatement. However, a name can also be declared by virtue of its appearance as a parameter or as a statement
name. A statementname that names a PROCEDUREstatement, an ENTRYstatement, or a BEGINstatement belongs to the block outside the one that contains that statement; any other statementname belongs to the block containing the statement that it names. This rule is needed in order to allow procedures to be called from the outside. A reference to a name is resolved by searching the nest of blocks for a declar
ation of the name, working from the inside out, and starting with the statement containing the reference. Another way of looking at it is that the scope of a name consists of the block declaring the name and all contained blocks except for those in which the scope is occluded by an inner declara
tion of the same name.
An example illustrating the scope of names is given in Figure 4. The parenthesized numbers are used to distinguish different declarations of the same identifier. There is an imaginary outer block used to hold the declarations of the entry points of the external procedure (A and B in this case), This block is needed since the entry points of a procedure belong, not to the block of the procedure itself, but to the next outer block. Since there is no such block for the external procedure, one must be created.
97
Figure 4. Example Illustrating Scope
1
A:
PROCEDURE;
2
DECLARE X CHARACTER(1);
3
DECLARE B FIXED;
4
statement sequence 1
5
B:
ENTRY(Y);
6
statement sequence 2
7
C:
BEGIN;
8
DECLARE W FIXED;
9
DECLARE Y PICTURE '(6)$';
10
statement sequence 3
11
D:
PROCEDURE;
12
DECLARE W FLOAT COMPLEX;
13
statement sequence 4
14
END D;
15
END C;
16
E:
PROCEDURE;
17
DECLARE W FLOAT;
18
Statement sequence 5
19
F:
B = 3;
20
G:
ENTRY;
21
statement sequence 6
22
END E;
23
END A;
Statements belonging to
Names belonging to
different blocks:
different blocks:
outer
none
outer
A(l), B(5)
A(1)
1,2,3,4,5,6,23
A(1)
X(2),B(3),Y(5),C(7),
E(16) ,G(20)
C(7)
7,8,9,10,15
C(7)
W(8),Y(9),D(11)
D(ll)
11,12,13,14
D(ll)
W(12)
E(16)
16,17,18,19,20,21,22
E(16)
W(17),F(19)
Statements in scopes of these names:
A(1)
123
Y(9)
715
X(2)
123
D(11)
715
B(3)
123
W(12)
1114
B(5)
none
E(16)
123
Y(5)
16,1623
W(17)
1622
C(7)
123
F(19)
1622
W(8)
710,15
G(20)
123
98
Internal and External Scope
In most cases, declarations are defaulted to have internal scope, meaning that the declaration designates an object distinct from the objects designated by other declarations of the same identifier. For instance, if the variable Q is declared in three different blocks of a procedure with the INTERNALattribute (possibly by default), then each of these blocks has its own distinct Q. However, several declarations can be made to refer to the same object by giving them external scope. External scope cannot be applied to just any declara
tion; it is restricted to the static and controlled storage classes, and to named constants. Identifiers declared to be external must necessarily have the same attributes. As an example, if the declaration
DECLARE A(14) STATIC EXTERNAL;
appears in two different blocks, then both declarations refer to a single array. If an assignment is made to A(4) while executing one of these blocks, then the change will be visible in the other. Declarations of an external identifier can appear both within a single external procedure and among several external procedures. The default scope for manifestly declared entry constants is external, since external procedures have to be declared by the programmer while internal procedures are automatically declared.
99
Entry Values and Environments
On account of the rules for scope of names in PL/I, a procedure can refer to names in blocks surrounding the proce
dure. Moreover, an entry point defines an entry value, and that value can be assigned to an entry variable and subsequent
ly invoked. Invocation of the entry point, in turn, requires that references to outerblock names be resolved properly.
In order to achieve this effect, an entry value contains not only a designation of an entry point but also an environment.
When the block surrounding the entry point is entered, the environment of the entry point is defined. The entry value corresponding to the entry point then consists of the entry point itself together with a record of all names inherited from outer blocks and the variables (or constants) that these names denote. In the case of recursive procedures, the environment implicitly designates not only a set of variables, but also a recursion level. The following example illustrates these concepts :
P:
PROCEDURE;
Q:
PROCEDURE(R,LEVEL) RECURSIVE;
DECLARE R ENTRY;
DECLARE LEVEL FIXED;
IF LEVEL=10 THEN
CALL R();
ELSE IF LEVEL=6 THEN
CALL Q(S,7);
ELSE CALL Q(R,LEVEL+1);
S:
PROCEDURE;
PUT DATA(LEVEL);
STOP;
END S;
END Q;
T:
PROCEDURE;
END T;
CALL Q(T,1) ;
END P;
100
The call on Q on the nexttothelast line initiates a nest of recursive calls. On each call, the value of LEVEL increases by 1. At the top level, the entry value T is passed as an argument to Q; but since this entry value is never invoked, it serves only as a placeholder. At the sixth level of recursion, the entry value S is passed as part of the recur
sive call on Q. The environment of this entry value consists of the current set of outerblock variables outer, that is, to S . In particular, since S is internal to Q, the current value of LEVEL 6 in this. case is part of the environment accompanying the entry constant S. On subsequent recursive calls, the entry value is simply passed along (cf. the call with parameters R and LEVEL+1) . When the recursion level reaches 10, R is called. The value of R is the entry constant S obtained at level 6, and so
LEVEL = 6
is printed out and the program halts.
The PL/I rules for block structure, scoping of names, and environments are derived from Algol 60. In fact, it is possible to transcribe the example above rather directly into Algol 60, and the behavior in Algol 60 would be the same.
101
ONUNITS AND ONSTATEMENTS
One of the more innovative aspects of PL/I is the facility that it provides for handling exceptional conditions the socalled ONconditions. An exceptional condition may arise either as the result of an error, such as a subscript out of range, or from an anticipated event, such as encountering endoffile while reading from a dataset or reaching the end of the program. PL/I has a set of ONconditions corresponding to these exceptional conditions. When the condition occurs, it is said to be raised. Using an ONstatement, the programmer can specify a response to the condition in the form of a statement (or beginblock) to be executed. That response is known as the ONunit. If no ONunit has been specified, a standard ONunit, known as the standard system action, is executed. Depending on the nature of the ONcondition, it may be possible for the program to continue where it left off after the ONunit is executed. The different kinds of ONconditions are listed in Table 7.
An example illustrating the use of ONconditions and ONunits is:
P:
PROCEDURE;
...
ON ENDFILE(SYSIN)
GO TO PROCESS;
DO WHILE('1'B);
READ FILE (SYSIN) INTO (LINE_IMAGE);
...
END;
PROCESS:
...
END P;
102
103
104
In this case, the ON ENDFILE statement specifies that when endoffile is encountered on the file SYSIN, the statement GO TO PROCESS; is to be executed. Thus the file will be read up to its end, and afterwards the statements at PROCESS will be executed.
The ONStatement, REVERTStatement, and SIGNALStatement The ONstatement specifies a list of ONconditions together with an ONunit. The association of the ONunit with the ONconditions is not made until the ONstatement is actually executed. Moreover, execution of a subsequent ON
statement can supersede the effect of an earlier one. For instance, after execution of the two ONstatements ON OVERFLOW, FIXEDOVERFLOW
GO TO TOOBIG;
...
ON FIXEDOVERFLOW
GO TO FIXEDBIG;
the ONunit associated with the OVERFLOW condition is GO TO TOOBIG;
while the ONunit associated with the FIXEDOVERFLOW condition is GO TO FIXEDBIG;
ONstatements have block scope, in the sense that they are effective only until the block containing them is terminated.
When execution of a block is completed, the association between ONconditions and ONunits reverts to what it was in the previ
ouslyexecuting block.
Thus a procedure can activate collection
105
of ONunits appropriate to its circumstances without affecting the ONunits set up by its caller.
The ONunit itself can be either a BEGINblock (delimited by BEGIN and END) or a single unconditional statement. In particular, an ONunit cannot be either a DOgroup or an IF
statement. Actual execution of the ONunit is carried out as though the ONunit were a procedure. In particular, ONunits carry environments with them, and so any names occurring in an ONunit have the meaning applicable at the point of execution of the corresponding ONstatement.
An ONstatement can specify the standard system action as an ONunit, using the keyword SYSTEM. Thus
ON SUBSCRIPTRANGE
SYSTEM;
specifies that the standard system action is to be taken if the SUBSCRIPTRANGEcondition is raised. This facility can be used to nullify the effect of previously executed ONstatements. It is also possible to specify that a traceback, or other debugging information, is to be printed in the event that a condition is raised. That effect is gotten by using the SNAP keyword, as in ON SIZE SNAP SYSTEM;
If the SIZEcondition is raised, the standard system action will be taken, but in addition debugging information will be printed.
The actual choice of debugging information is implementation
defined. The statement
ON SIZE SNAP;
106
would produce a different effect: if the SIZEcondition is raised, the nullstatement, which does nothing, will be executed, In fact, the nullstatement is not a valid ONunit for the SIZEcondition because it does not terminate in a GOTO
statement. The question of validity of such ONunits is discussed below.
The REVERTstatement can be used to cancel the effect of an ONstatement, or several of them, without knowing what ON
condition was in effect previously. The REVERTstatement speci
fies a list of ONconditions. Execution of the REVERTstatement causes the ONunit for each of these conditions to revert to what it was in the previouslyexecuting block. Thus, in the sequence:
ON ENDFILE(SYSIN)
CALL ENDER;
BEGIN;
...
ON ENDFILE(SYSIN)
GO TO ALT_END;
...
REVERT ENDFILE(SYSIN) ;
END;
the REVERTstatement causes the oncondition CALL ENDER;
to again be associated with the ENDFILEcondition for the file SYSIN.
The SIGNALstatement is used to raise a specified ON
condition. For example, the statement
SIGNAL ZERODIVIDE;
107
causes the ZERODIVIDEcondition to be raised and the appropri
ate ONunit (possibly the standard system action) to be invoked.
This statement is particularly useful in debugging program logic for handling ONconditions. It is also the only way to raise a programmerdefined condition (discussed below).
Enablement and Disablement
A number of the ONconditions require timeconsuming code (on most machines, at least) in order to check whether or not they have occurred. The time needed to check whether a sub
script is out of range, for instance, well may dominate the time needed for the retrieval of a subscripted variable. There
fore PL/I allows the programmer to either enable (turn on) or disable (turn off) the check. Enablement and disablement are provided only for certain ONconditions. They are specified by means of a condition prefix, which consists of either an ON
condition name or the negation of an ONcondition name, in parentheses and followed by a colon. The condition prefix can be applied either to a single statement or to a block. For example, in the sequence:
(OVERFLOW,NOSIZE):
P:
PROCEDURE;
...
(NOOVERFLOW):
Q = A + BTR(I);
...
END;
the SIZEcondition is disabled throughout the procedure P, while the OVERFLOWcondition is enabled throughout P except for the 108
single statement where NOOVERFLOW is indicated. For that statement, the condition is disabled, and no test will be made for it. If a condition is raised in a statement where it has been disabled, that is considered to be a programmer error, and the implementation is not to be held responsible for its consequences.
Enablement and disablement are static properties of a program. In other words, it is possible to tell whether a particular ONcondition is either enabled or disabled for a particular statement just by looking at the program, without considering what its sequence of execution is. In this respect, enablement and disablement differ from the ONstatements, whose execution depends on program flow. Enablement and dis
ablement affect whether a condition is or is not to be tested for, while ONstatements determine what action is to be taken if the condition is raised. The statement
ON UNDERFLOW;
does not disable the UNDERFLOWcondition; it merely states that if that condition is detected, the nullstatement is to be executed.
Builtin Functions for ONConditions
During the execution of an ONunit, a number of builtin functions are available in order to determine the circumstances that caused the corresponding ONcondition to be raised. Some of these apply to all ONconditions and are discussed here; 109
other are specific to particular ONconditions and are discussed in connection with those conditions. In general, these builtin functions do not have meaningful values except in the context of an ONunit. They are all functions of no arguments.
The ONCODE builtin function has as its value an imple
mentationdefined integer used to indicate why the active ON
condition was raised. A particular condition may have more than one code value associated with it. One common convention is that the value of ONCODE is zero if the ONcondition was raised by a SIGNALstatement. The ONLOC builtin function returns as its value the name of the innermost entry point active when the condition was raised. For inputoutputrelated ONconditions, the ONFILE builtin function has as its value the name of the file that was being operated upon when the con
dition was raised. The values of both ONLOC and ONFILE are in the form of character strings.
Categorization of the ONConditions
The various ONconditions listed in Table 7 can be broken down into three groups. The first group consists of the compu
tational ONconditions. Most conditions in this group are raised in response to a particular kind of error. The computa
tional ONconditions are the only ones that can be enabled and disabled. They are:
110
CONVERSION
FIXEDOVERFLOW
OVERFLOW
SIZE
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE
UNDERFLOW
ZERODIVIDE
The occurrence of one of these conditions usually means that a bad result has been generated, and so the active computation cannot be continued. For this reason, the ONunits associated with most of these conditions must not terminate normally, i.e., must cause a transfer of control out of the ONunit by means of a GOTOstatement or similar construction. Normal termination would mean that the active computation would be resumed, and the nature of the condition is such that the computation cannot be resumed. For instance, if a subscript is out of range on an array reference, there is no way to obtain an appropriate value for the reference.
Three of the computational ONconditions are treated somewhat differently. The CONVERSIONcondition is raised when data is being converted from character to some other type.
When this condition is raised, the programmer can modify the character string to be converted. If a normal return takes place from the ONunit, i.e., the ONunit completes without a transfer of control, the conversion is reattempted with the modified input string.
Two builtin functions are available for the modification: ONSOURCE and ONCHAR. ONSOURCE has as its value the character string to be converted, while ONCHAR has as its value the left111
most character in that string for which no valid continuation exists. By examining ONSOURCE and ONCHAR, the programmer may be able to determine the difficulty and what to do about it.
Moreover, ONSOURCE and ONCHAR can be used on the left side of an assignment (within an ONunit for the CONVERSIONcondition), and so the string to be converted can be modified by assign
ments to either ONSOURCE or ONCHAR (which can also be used as pseudovariables). For example, if a character string is being converted to a bit string the following ONunit might be appropriate:
ON CONVERSION BEGIN;
DECLARE ONCHAR BUILTIN;
IF ONCHAR='␢' THEN
ONCHAR = '0';
ELSE ONCHAR = '1';
END;
If the string to be converted does not consist entirely of ones and zeros, each blank in that string will be replaced by a zero, and each other deviant character will be replaced by a one.
The UNDERFLOWcondition also receives slightly different treatment. Normal return from the UNDERFLOWcondition is permitted, and the value of the computation that underflowed is taken to be zero. The STRINGSIZEcondition arises when a string is shortened as a result of a conversion or assignment. Upon normal return from the ONunit, the string is truncated on the right to the required length. Since the standard system action in this case is to do nothing, this condition is often ignored.
However, it can be used in either of two ways. If it is disabled, then the compiler need not produce code to check for string 112
overflow. Moreover, if a nonstandard ONunit is provided, then the programmer can take some action. However, there is no way that the programmer can modify the result produced either for the UNDERFLOWcondition or for the STRINGSIZE
condition.
The second group of ONconditions is the inputoutput conditions. Each of these conditions is associated with a particular file, specified along with the condition name.
The inputoutput conditions are:
ENDPAGE
ENDFILE
KEY
NAME
RECORD
TRANSMIT
UNDEFINEDFILE
Some of these conditions are discussed further in connection with inputoutput.
The remaining conditions are more varied. These are: AREA
CONDITION
ERROR
FINISH
STORAGE
The AREAcondition is raised when an allocation is attempted in an area, and there is insufficient space for the allocation.
If the associated ONunit returns normally, the areareference in the ALLOCATEstatement is reevaluated, and the allocation is reattempted. Therefore an appropriate response to the AREA
condition is to assign a new area value to the area variable referenced in the ALLOCATEstatement.
113
The programmer can define ONconditions using the keyword CONDITION and an identifier, known as the conditionname. ON
units can be provided for programmernamed conditions, but they can only be raised by a SIGNALstatement. For instance, a programmer might write:
ON CONDITION(TABLE_OVERFLOW)
CALL OVERFLOW_RECOVERY;
and then, in some other part of the program, write: IF T > TABSIZE THEN
SIGNAL TABLE_OVERFLOW;
The ERRORcondition is raised under a variety of circum
stances, some of which can be implementationdefined.
The
standard system action in response to a number of other ON
conditions is to comment (i.e., display diagnostic information) and then to raise the ERRORcondition. (It is quite acceptable to have an ONunit raise an ONcondition itself.) The FINISHcondition is raised when the program completes.
It differs from all other conditions in that it is raised as a normal aspect of program execution. The STORAGEcondition is raised when the program runs out of storage. Since programs consume storage in many different ways, the exact circumstances under which it is raised are implementationdefined. Recovery from this condition may or may not be possible.
114
OTHER STATEMENTS AFFECTING FLOW OF CONTROL
Conditional Statements
The conditional statement is used in order to test a condition and take some action depending on the result. A conditional statement starts with an IFstatement, specifying the test, and may include an ELSEpart that specifies what action to take if the test fails. For instance, the sequence IF Q <= QMAX THEN
INDEX = INDEX+1;
ELSE GO TO PART_7;
causes the assignment
INDEX = INDEX+1;
to be executed if the condition Q <= QMAX is true, and the statement
GO TO PART_7
to be executed otherwise. The statement following either THEN
or ELSE can itself be a conditional statement, so that nests of conditional statements can be built up. Moreover, either THEN or ELSE can be followed by a DOgroup (discussed below), so that several statements can be executed after the test rather than just one. An example of a more complicated conditional statement is:
115
IF A(I)=0 THEN DO;
SIZE1=SIZE1+INCR;
SIZE2=SIZE2INCR;
IF SIZE2<SIZE1 THEN
CALL ADJUST;
END;
END; IF A(I) >0 THEN
SIZE2=SIZE2+INCR;
ELSE SIZE1=SIZE1INCR;
It is not necessary that each IFstatement have a corresponding ELSEstatement. In complicated conditional statements, each ELSE is paired with the nearest preceding unpaired IF, working from front to back.
The test in an IFstatement actually takes the form of an expression, which is evaluated and converted to a bit string. Since the comparison operators all produce onebit results, and since the logical operators also produce onebit results when their operands are onebit values, the conversion is usually unnecessary. If the bit string obtained by evaluating the test expression has at least one onebit in it, the test succeeds, and otherwise it fails. The test expression must be scalarvalued, although if it is not scalarvalued the SOME and EVERY builtin functions can be used to reduce it to a scalar value.
The DOStatement
The DOstatement has three main variants: the simple DO, the DOWHILE, and the specified DO. The simple DO is used in order to convert, syntactically, a sequence of statements into a single statement. A simple DOgroup has the form: 116
DO;
statementsequence
END;
The statements in the sequence are executed just once. Transfers of control into and out of the sequence are permitted. The main use of the simple DOgroup is as part of a conditional statement, The DOWHILE variant has the form:
DO WHILE (expression);
A DO WHILEgroup consists of a DO WHILEstatement followed by a statement sequence and a matching ENDstatement. The state
ments in the group are executed repeatedly, and the expression in the DO WHILEstatement is tested before each execution. If the test fails, control is transferred to the statement follow
ing the group. If the expression is initially false, the group is not executed at all. An example of a DO WHILEgroup is: DO WHILE (CVAL>0);
DVAL=DVAL+G(CVAL);
CVAL=CVALDVAL;
END;
The specified DO itself has a number of variants. As with the other two forms, a DOgroup consists of a specified DO
statement followed by a statement sequence followed by an END
statement. The most common variant is illustrated by: DO M = 0 TO 100 BY 2;
In this case the statements in the group are executed repeatedly.
Before the first execution, M is assigned the value 0. M is then increased by 2 on each execution of the group, and has 117
the value 100 on the last execution of the group. Upon comple
tion of the entire group, the value of M is 102. However, transfer out of the group is permitted, and if that happens, M retains the value assigned to it on the most recent iteration.
The TOclause and the BYclause can be written in either order, and either of them can be omitted. If the TOclause is omitted, the group is iterated indefinitely, i.e., until a transfer of control out of the group takes place. If the BY
clause is omitted, a value of 1 is assumed for it. On each iteration, the control variable (the variable following the keyword DO) is incremented by the value given in the BYclause.
If the BYclause has a negative value, then the control vari
able is decremented rather than incremented. The loop terminates when the value of the control variable is greater than the value of the TOclause (for a positive BYvalue) or less than the value of the TOclause (for a negative BYvalue). If the termination test is satisfied by the initial value of the control variable, the group is executed zero times. If neither the TOclause nor the BYclause appears, the group is executed for a single value of the control variable.
The TOclause and the BYclause are both evaluated prior to execution of the statements within the DOgroup. Thus any changes to values of variables that appear within the TOclause or the BYclause have no effect once the iteration has started.
The control variable need not have arithmetic type; a string or pictured type is also acceptable. A WHILEclause can also be specified, e.g.,
118
DO JV = X BY Y WHILE(PROP(JV)<PROP(JV+1)); Another variant is illustrated by:
DO P = LIST_HEAD REPEAT(P>NEXT) WHILE(P¬=NULL); or
DO STRING='' REPEAT(STRING||CHARS(I)) WHILE(LENGTH(STRING)<LMAX); The control variable is assigned the given initial value on the first iteration. On subsequent iterations, the value of the REPEATclause is recalculated and assigned to the control variable. The WHILEclause can be omitted, although usually it is desirable to include it.
The specified DO can consist of a sequence of specifications rather than a single one. For instance, the statement DO M = 3,7,M+2 BY 3 TO 15,0;
executes the group of statements that follows for the sequence of values 3, 7, 9, 12, 15, 0. Each specification in the group can have the general forms described above.
The GOTOstatement
The GOTOstatement causes control to be transferred to the label specified in the statement. The statement actually specifies a labelvalued expression, and although that expres
sion normally is a constant, i.e., a statementname, it need not be. For instance, it could be a subscripted reference to an array of statementnames, so that the appropriate destina
tion is selected by the value of an index.
119
The destination of a GOTOstatement need not be in the same block as the statement itself. If the destination is in a different block, then the effect of the statement is to terminate execution of the current block and all blocks between the statement and its destination. In other words, at the moment when the GOTOstatement is executed, there will be a hierarchy of active blocks, with the current block last in the hierarchy. The label value obtained from the GOTO
statement must designate, as its environment component, some block in the hierarchy. Then all blocks between the designated block and the current block, as well as the current block itself, are terminated. The designated block then becomes the current block, and control is transferred to the statement named by the label value.
A GOTOstatement whose destination is not in the same block as the statement itself is called a nonlocal goto.
A nonlocal goto is expensive to execute relative to a local one.
Therefore the programmer is allowed to declare the LOCAL
attribute for a label variable. The LOCALattribute consti
tutes a claim by the programmer that any GOTOstatement using the value of that label variable will be a local goto. Thus the compiler need not examine the environment associated with the label, and can generate instructions to execute the requested transfer of control directly.
120
The STOPStatement and the NullStatement
The STOPStatement has the form
STOP ;
and is used to stop execution of the program. It has the effect of terminating the execution of all currently active blocks.
The nullstatement has no text at all; it is written as just a semicolon. Its main uses are to place a statementname, to fill out a branch of a conditional statement where no action is to be taken, and to specify that no action is to be taken in response to a specified ONcondition.
121
FILES AND RECORD INPUTOUTPUT
File Attributes
The attributes of a file determine the kinds of operations that can meaningfully be applied to that file. Moreover, they dictate to some extent the characteristics of the dataset associated with the file. The final determination of file attributes takes place when the file is opened, i.e., associ
ated with a dataset. If a file is opened and closed several times, it can have different attributes at different openings.
The file attributes INPUT, OUTPUT, and UPDATE determine the direction of information flow in an obvious way. An opened file must have either the RECORDattribute or the STREAM
attribute. A record file is associated with a dataset con
sisting of a sequence of records, which are read or written as single units. A record may or may not have a key associ
ated with it. If it does, then the file has the KEYED
attribute. If the records are sequenced, i.e., the notion of
"next record" is meaningful, then the file has the SEQUENTIAL
attribute; otherwise it has the DIRECTattribute. A direct file is necessarily keyed, since without a key there is no way to designate a record within the file, while a sequential file may or may not be keyed.
A stream file is associated with a dataset consisting of a sequence of characters. Within the sequence of characters, linemarks, pagemarks, and carriagereturns can appear. A linemark marks the break between the characters on two succes122
sive lines (either input or output). A pagemark is meaningful only for a dataset that is to be printed, and marks the start of a new page. A carriagereturn is meaningful only for a dataset that is to be printed, and indicates that the follow
ing line is to be overprinted, i.e., printed without advancing the carriage. A file associated with a dataset to be printed has the PRINTattribute, and consequently the OUTPUTattribute also.
A file may also have an ENVIRONMENTattribute associated with it. The ENVIRONMENTattribute contains implementation
defined information describing the associated dataset. Typical items found in the ENVIRONMENTattribute are record length, blocking factors, record formats, character set selection, and tape densities.
File Opening and Attribute Determination
A file can be opened either explicitly, through execution of an OPENstatement, or implicitly, through execution of some other inputoutput statement referencing an unopened file. When the file is opened, any attributes given in the file declara
tion are combined with those given in the OPENstatement. The resulting partial set of attributes is then checked for consis
tency. If any inconsistency is found, the UNDEFINEDFILE
condition is raised for the file. Then defaulting rules are applied to generate a complete set of file attributes. The possible sets of file attributes are given in Table 8. For 123
TABLE 8. Complete Sets of File Attributes
STREAM INPUT FILE
STREAM OUTPUT FILE
STREAM OUTPUT PRINT FILE
STREAM INPUT SEQUENTIAL FILE
RECORD INPUT SEQUENTIAL KEYED FILE
RECORD INPUT DIRECT KEYED FILE
RECORD OUTPUT SEQUENTIAL FILE
RECORD OUTPUT SEQUENTIAL KEYED FILE
RECORD OUTPUT DIRECT KEYED FILE
RECORD UPDATE SEQUENTIAL FILE
RECORD UPDATE SEQUENTIAL KEYED FILE
RECORD UPDATE DIRECT KEYED FILE
Note:
The ENVIRONMENTattribute may be added
to any of these combinations.
124
example, in the sequence
DECLARE CHANGES INPUT FILE;
...
OPEN FILE(CHANGES) KEYED;
the initial set of attributes used for opening the file CHANGES
is INPUT KEYED. Since these attributes are consistent with each other, the opening can proceed. The RECORD and FILE
attributes are implied by the KEYED attribute, and so these are added to obtain the set RECORD INPUT KEYED FILE. Although both DIRECT and SEQUENTIAL are consistent with this set, the default choice is SEQUENTIAL, and so SEQUENTIAL is added to obtain the complete set
RECORD INPUT SEQUENTIAL KEYED FILE
The FILEoption in an OPENstatement contains a filevalued expression, which is either a constant or something that evaluates to a file constant. It is assumed that each dataset has a name (typically, known to the surrounding operating system) and so the file opening has to specify the name of the dataset to be linked to the file. The name can be specified by a TITLEoption; if it is not, the name of the file constant obtained by evaluating the FILEoption is used. Thus the statements
DECLARE CHANGENAME CHARACTER(4);
CHANGENAME = 'C437';
OPEN FILE(CHANGES) TITLE(CHANGENAME) STREAM INPUT; OPEN FILE(OLDSET) RECORD INPUT DIRECT;
cause the file CHANGES to be associated with the dataset C437, and cause the file OLDSET to be associated with the dataset OLDSET.
125
For stream files, other information can be given in the OPENstatement. For instance,
OPEN FILE(LISTING) PRINT LINESIZE(110) TAB(10,40,70) PAGESIZE(50);
causes the file LISTING to be opened with the understanding that a new line will be started after at most 110 characters, a new page will be started after at most 50 lines, and tabstops (discussed under "EditDirected InputOutput" below) will be placed at column positions 10, 40, and 70. Were any of these values to be omitted, implementationdefined values would be assumed.
If an inputoutput statement is executed on a closed file, then the file is implicitly opened. For instance, if the statement
PUT FILE(ANS)(M,N);
is executed and the file ANS is not open, the file will be opened with the implicit attributes STREAM and OUTPUT.
Similarly, if the statement
DELETE FILE(INV) KEY(PART_NAME);
is executed and the file INV is not open, it will be opened with the implicit attributes RECORD and UPDATE. The implicit attri
butes are treated as though they appeared on an OPENstatement, so any attributes given in the declaration of the file are combined with those derived from the implicit opening.
126
File Closing
Just as the OPENstatement creates the connection between a file and a dataset, the CLOSEstatement breaks the connection.
All files are automatically closed at program termination. The programmer can also specify actions such as dataset disposition by means of an ENVIRONMENTattribute attached to the CLOSE
statement, e.g.,
CLOSE FILE(BIBLIO) ENVIRONMENT(REWIND);
A file can be closed and later reopened with different attributes An attempt to open a file that is already open, or to close a file that is closed, has no effect.
Operations on Record Files
There are five statements applicable to record files: READ
WRITE
LOCATE
REWRITE
DELETE
Each of these, in turn, has a number of clauses that can be applied to it. The attributes of a file determine which state
ments and clauses can meaningfully be applied to that file.
For instance, READ cannot be applied to an output file, DELETE
can only be applied to an update file, and any clause that references a key can only be applied to a keyed file. The meanings of the statements are summarized in Table 9, and the meanings of the clauses are summarized in Table 10. Table 11
127
Table 9. Record InputOutput Statement
READ
read a record from a dataset (input and update files only REWRITE
replace a record on a dataset
(update files only)
WRITE
add a record to a dataset
(output and update files only)
LOCATE
obtain buffer space for a record
(output files only)
DELETE
delete a record from a dataset
(update files only)
Table 10. Clauses on Record Input Output Statements FILE
specifies the file accessed by this statement INTO
specifies the generation to receive a record being read
FROM
specifies the generation containing a record to be written
KEY
specifies a record to be read, replaced,
or deleted
KEYFROM
specifies the source for a key to be attached to a record to be written
KEYTO
specifies where to put the key associated
with a record being read
IGNORE
specifies the number of records to be skipped by execution of a read statement
SET
specifies where to put a pointer to a newly
created generation
128
129
shows how the different statement forms relate to the different combinations of file attributes.
The chief characteristic of record inputoutput is that it involves a direct transfer of information between the dataset and addressable memory, without any formatting or editing. It is therefore the programmer's responsibility to be sure that the format of information on the dataset agrees with the format in memory, as defined by the imple
mentation. If the dataset is itself created by a PL/I pro
gram, this is not too difficult.
The READstatement causes a single record to be read from a specified file. It can also be used to skip records on a sequential file. Its simplest form, applied to a sequential file, is illustrated by
READ FILE(CUST) INTO(CUST_INFO);
A single record is transferred from the dataset associated with CUST into the variable CUST_INFO. If the size of the record disagrees with the size of the variable, the RECORD
condition is raised for the file. If there are no more records left in the dataset, the ENDFILEcondition is raised for the file.
The destination of a newly read record can be specified either by an INTOclause or by a SETclause. If the INTO
clause is given, then the record is read into a buffer, and the pointer specified in the SETclause is set to the location of the record within the buffer. Although the SETclause is 130
less convenient to use than the INTOclause, it has two advantages. First, the SETclause can be used to read records whose length is specified within the record itself.
The INTOclause cannot be used for such records because the size of the necessary variable is not known. Second, operat
ing on the record in the buffer avoids the need to copy the record from the buffer to the variable.
The KEYclause is used to specify the position within the dataset of the record to be read. For instance, the statement
READ FILE(EMPL) INTO(EMPLOYEE_RECORD) KEY(EMP_NUMBER); causes the record whose key is the characterstring form of EMP_NUMBER to be read into the variable EMPLOYEE_RECORD.
(If the key value is not a character string, it is converted to one.) If the key designates a nonexistent record, the KEY
condition is raised for the file.
The KEYTOclause, in contrast, does not influence the dataset position at all. Instead the key in the record being read is assigned to the variable specified in the KEYTOclause.
This facility is necessary since the key may not be part of the record itself. For instance, the statement READ FILE(EMPL) INTO(EMPLOYEE_RECORD) KEYTO(EMP_NUMBER); causes the next record from EMPL (which must be keyed sequential) to be read into EMPLOYEE_RECORD, and the key associated with that record to be assigned to EMP NUMBER.
131
The IGNOREclause can be used in order to skip records.
For instance, the statement
READ FILE(EMPL) IGNORE(2);
causes two records on the dataset associated with EMPL to be skipped. (EMPL must necessarily be sequential.) The IGNORE
clause and the KEYclause can be used together, and if the count in the IGNOREclause is zero the effect is to position the dataset at the record designated by the KEYclause. The IGNOREclause and the KEYTOclause can be used together to read a key without reading the associated record.
The WRITEstatement can be used only with output or direct update files. It causes the variable named in the FROMclause to be written onto the dataset. If the dataset is sequential, the new record is written at its end; otherwise the position of the new record is arbitrary. The KEYFROMclause, which specifies the key of the new record, must be used if the file is keyed.
The LOCATEstatement can be used only with output files.
It is analogous to the READstatement with the SEToption.
Execution of a LOCATEstatement causes space for the variable named in the statement to be allocated in an output buffer, and then causes the pointer named in the SETclause to be set to the location of this space. If the variable is declared with a pointer, then the SETclause can be omitted and the pointer obtained from the declaration will be used. For instance, given the statements
132
DECLARE RECSPACE CHARACTER(200) BASED(CHPTR); DECLARE CHPTR POINTER;
the statements
LOCATE RECSPACE FILE(NEWSET);
and
LOCATE RECSPACE FILE(NEWSET) SET(CHPTR);
are equivalent. After execution of a LOCATEstatement, the programmer can construct a record within the buffer, referenc
ing the record using the variable and pointer specified in the LOCATEstatement. The record is written when either another LOCATEstatement or a WRITEstatement is executed for the file. Closing the file after executing the LOCATE
statement also causes the record to be written.
The REWRITEstatement can only be used with update files; it causes a record in the dataset to be replaced. The FROM
option can be omitted if the preceding operation on the file was a READ with the SETclause; in this case the record just read (which is assumed to have been modified) replaces its old copy in the dataset. Otherwise the FROMclause specifies the source of the replacement record, and the KEYclause, if given, specifies which record is to be replaced. If the KEYclause is not given, then the file must be sequential, and the record at the current position in the file is replaced. For the replacement to be acceptable, the current position must be welldefined, and the preceding operation on the file must not have been a DELETE.
133
The DELETEstatement, like the REWRITEstatement, can only be used with update files. If a key is specified, then the record with that key is deleted. Otherwise the behavior is similar to that of REWRITE: the record at the current position is deleted; the current position must be welldefined; and the preceding operation must not have been another DELETE.
134
STREAM INPUTOUTPUT
Stream inputoutput differs from record inputoutput in that a transformation is performed when information is moved between a generation of storage and a dataset. On output, the transformation consists of translating a data value (which must be of a printable type) into a character representation of that value; on input, the transformation goes in the opposite direction. The character representation need not represent the value directly, since formatting conventions can be used.
For instance, the character sequence "4387" could represent the value 43.87 on either input or output, were an appropriate format to be used. The GETstatement is used for stream input, while the PUTstatement is used for stream output.
Each of these statements has three variants: listdirected, datadirected, and editdirected . With the exception of a few pathological cases, input is the inverse of output. Thus, if information is written by a PUTstatement and later read by a GETstatement of the same form, the original values in storage will be unchanged. However, it is not in general true that reading from a file and then writing what was read will yield the contents of the original file.
The file to be operated on by a GETstatement or a PUT
statement can be specified either explicitly or implicitly.
The statement
PUT FILE(TABLES) LIST(A, B);
causes the printable representation of the values of A and B
135
to be written onto the file TABLES. If the FILEclause is omitted, the standard input file SYSIN is assumed for GET
statements, and the standard output file SYSPRINT (a print file) is assumed for PUTstatements.
The stream inputoutput statements can be used to encode and decode strings in storage by means of the STRINGclause.
For example, the statement
GET STRING(STR) LIST(A,B);
causes the values of the variables A and B to be "read" from the string STR, just as though STR was a sequence of characters on an input file. Similarly,
PUT STRING(STR) LIST(A,B);
causes the values of A and B to be converted to their printable representations, and then causes the sequence of representations (with an intervening blank) to be assigned to the character variable STR.
Line and page skips can be specified in the GETstatement and the PUTstatement , although certain forms are applicable only to a PUTstatement that designates a print file. For instance,
PUT SKIP(2) LIST(A,B);
causes two lines to be skipped before A and B are printed, while PUT PAGE LIST(A, B);
causes a new page to be started before A and B are printed.
The statement
136
PUT LINE(2) LIST(A,B);
causes the printer to be positioned to the second line on the page before A and B are printed; it differs from SKIP in that it selects an absolute page position rather than a page posi
tion relative to the previous line. PAGE and LINE can only be specified for print files. SKIP on an input file causes the remainder of the input line to be skipped.
Data Lists
A GETstatement or a PUTstatement can contain one or more data lists, specifying the items to be read or written.
In its simplest form, the data list is merely a sequence of scalars, e.g.
PUT LIST(RATE,TIME,RATE*TIME);
As this example shows, expressions as well as variables can appear in the data list of a PUTstatement. The items in the data list of a GETstatement, however, have the same restrictions as the targets of an assignmentstatement, since one cannot read a value into an expression. A data list can also contain iterations, e.g.,
PUT LIST((I,F(I) DO I = 1 TO FNLIMIT));
Since any item can itself be an iteration, iterations can be nested to any depth. The DO that controls the statement is subject to the same restrictions as the specifiedDOstatement.
A GETstatement can use an input value as an iteration count, e.g.,
137
GET LIST((N,(COST(K) DO K = 1 TO N));
Moreover, aggregates can be included in the data list, e.g., DECLARE MIX(40,40) FIXED;
PUT LIST((MIX(*,I) DO I = 1 TO 40));
In this example the elements of MIX will be printed out with the first subscript varying most rapidly, as in Fortran. On the other hand, the statement
PUT LIST (MIX);
with MIX declared as above will print out the elements of MIX
with the last subscript varying most rapidly (since this is the implicit order in storage, as defined by the rules of PL/I).
ListDirected InputOutput
The GET LISTstatement reads an unformatted sequence of items from the input stream. The data to be read consists of a list of items separated by blanks or commas, e.g., 23,47,'DAVID DAVIS'
Since the dataset is left positioned after the last character that was read, it is possible to read items from the same line using several separate GET LISTstatements in succession. The successive items on the dataset are assigned to the successive items in the data list. If the data list contains an aggregate, then enough items are read from the dataset to fill the aggre
gate. The dataset can also indicate empty items by means of two commas in a row. For instance, the statement 138
GET LIST(M1,M2,M3);
applied to the input
22,,891
will cause Ml to be set to 22, M3 to be set to 891, and M2 to be left unchanged.
The types of the items read from the dataset need not agree with the types of the items in the data list; if there is any disagreement, the item read is converted to the type of the item in the data list. For instance, the input value for a float variable can be written as an integer. A characterstring item on the dataset need not be quoted unless it contains a comma or blank or starts with a quote.
Thus
THIS ISN'T BAD
can be read into a list of three character variables, and the variables will receive the strings exactly as written.
However, if the dataset contains the item
'ISN''T'
the usual rules for interpreting a characterstring constant will be applied and the receiving variables will receive the value
ISN'T
The PUT LISTstatement writes a sequence of items onto the specified output file. Successive items are placed at successive tabstop positions, and when a line is filled (as 139
defined by the linesize for the dataset) a new line is started. If the output file is not a print file, however, items are separated by single blanks rather than placed at tabstops. Thus the effect of
PUT SKIP LIST((N DO I = 1 TO 10));
might be to print the lines
1
2
3
4
5
6
7
8
9
10
under some appropriate assumptions about the linesize and tabstop positions. Since a PUT LISTstatement does not force an end of line, several PUT LISTstatements can place output onto the same line.
DataDirected InputOutput
The GET DATA statement reads a sequence of variable names and associated values, e.g.,
A=3
B=12 D=0;
The pairs in this sequence can be separated by either blanks or commas (as with the GET LISTstatement), and the sequence is ended by a semicolon. The GET DATAstatement itself can, but need not, specify a list of variables, e.g., GET DATA(A,B,C,D,E);
or
GET DATA;
The second form is easier to use, but it has the disadvantage 140
that it forces a complete symbol table to be included in the compiled program. The items in the input stream need not be given in the same order as the variables in the list. More
over, variables in the data list can be repeated or omitted in the input stream. Subscripted and namequalified variables can also be included in the input stream, although name qualifications must be complete. For instance, A(3,7) = 'JOE', A(4, 7) = 'SAM', ST.COUV = 19.3; is a valid input line, assuming an appropriate data list.
The PUT DATAstatement writes a list of variables, together with their values, onto the output stream. As with the GET DATAstatement, the PUT DATAstatement need not contain a list. Execution of the statement
PUT DATA;
causes the values of all printable variables to be written onto the output stream. Otherwise, the listed variables are written out. If any of these variables are aggregates, the scalar elements of the aggregate are written out, using fullyqualified names and appropriate subscripts.
Unlike the other two forms of the PUTstatement, the PUT DATAstatement cannot include expressions in the data list, since expressions do not have names. If the output file is a print file, successive items are placed at succes
sive tabstops. Thus, assuming appropriate stored values and tabstops, the effect of the statements
141
DECLARE
1 AGG(3),
2 (RED,BLUE) FIXED DECIMAL(2);
PUT DATA(AGG);
is to print out the lines
AGG.RED(l) = 4
AGG.BLUE(l) = 8
AGG.RED(2) = 0
AGG.BLUE(2)= 5
AGG.RED(3) = 7
AGG.BLUE(3) = 1;
EditDirected InputOutput
Editdirected inputoutput is accomplished through the GET and PUT EDITstatements. For editdirected inputoutput, the transformation between the internal and external forms of the data is governed by a format list. When an item in a data list is read, a format is obtained from the format list and used to transform the character representation of the item, as it appears in the input stream, into a stored value. When an item in a data list is written, a format is used to transform the value of the item into a sequence of characters to be inserted into the output stream. For example, the statement
GET EDIT (I, J) (F(4),F(3));
applied to the input stream
␢␢25.00␢␢␢3.14
causes the variables I and J to be assigned the values 15
(obtained from the first four characters of the stream) and 3 (obtained from the next three characters of the stream).
Similarly,
142
PUT EDIT(25,3.142) (2F(7,2));
causes the characters
␢␢25.00␢␢␢3.14
to be placed into the output stream. In this case, the 2 in front of the format item F(7,2) indicates that the item is to be repeated twice.
The available formats are listed in Table 12. There are two kinds of formats: control formats and data formats.
Control formats control positioning of the dataset; they cause skipping of information on input, and generation of blanks, linemarks, pagemarks, and carriagereturns on output.
When a format list is interpreted, control formats are executed as they are encountered; a control format does not use up an item from the data list. A data format, on the other hand, requires a corresponding item in the data list, and the format item together with the data item determines what action is to be taken.
When the data list is exhausted, interpretation of the format list ceases. For instance, execution of the statement PUT EDIT(J) (E(9),SKIP);
does not cause the control format SKIP to be executed, since after J is paired with E(9) the data list is exhausted and execution of the statement is complete. If the format list is exhausted while items still remain in the data list, then interpretation of the format list starts over again from the 143
Table 12. Format Types
(1) Data Formats
A(w)
alphanumeric with field width w
(w can be omitted on output)
B(w)
bitstring with field length w
Bl(w)
(w can be omitted on output;
B2(w)
B1 indicates base 2, B2 indicates base 4,
B3(w)
B3 indicates base 8, and
B4(w)
B4 indicates base 16)
F(w,d,s)
fixed with field width w, d digits to right
of decimal point, scaling s
(d and s are optional)
E(w,d,s)
float with field width w, d digits to right
of decimal point in mantissa, s digits in
mantissa (d and s are optional)
P pic
pictured according to picture pic
C(f1,f2)
complex with real part formatted using fl,
imaginary part formatted using f2
(f2 assumed the same as fl if f2 omitted)
(2)
Control Formats
X(w)
blank or ignore field of width w
COLUMN(n)
continue reading or writing at column position n TAB(n)
skip n tabstops
SKIP(n)
skip n lines
LINE(n)
position at nth line of printed page
PAGE
start new printed page
(3) Remote Format
R(ref)
use format obtained by evaluating
reference ref
144
Table 13. Examples of Input Formats
Input Field
Format
Value
TWO␢CATS
A(8)
TWO␢CATS
1011
B(4)
'1011'B
ONE
B(3)
none CONVERSION raised
␢ 1011
␢
␢
B(7)
'1011'B
2437
B3(4)
'010100011111'B
2437
F(4)
2437
␢2427␢
F(6)
2437
␢2437␢
F(6,1)
243.7
.2437
F(4,1)
.2437
2437
F(4,1,2)
24370
CATS
F(4,1,2)
none CONVERSION raised
2437E1
F(6)
none CONVERSION raised
2437
E(4)
2437E0
2437E2
E(7)
24.37E0
2437
E(4,1)
243.7E0
2437E2
E(4,1)
2.437E0
2.437E2
E(5,1)
243.7E0
2437E2
E(4,1,1)
2.437E0
␢␢␢
F(3)
0
␢␢␢
E(3)
0
␢␢2437
P '(6)Z'
2437
2437␢␢
P '(6)Z'
none CONVERSION raised
2437
C(F(2))
24+37I
2437
C(F(3,1),F(2))
2.4+37I
145
Table 14. Examples of Output Formats
Value
Format
Output Field
DYNASTY
A
DYNASTY
2.48
A
␢␢2.48
DYNASTY
A(6)
DYNAST
DYNASTY
A(10)
DYNASTY␢␢␢
'1011001'B
B
1011001
'1011001'B
B3
544
'1011001'B
B4
D2
'1011001'B
B4(5)
D2␢␢␢
'1011001'B
B4(1)
D (and STRINGSIZE raised)
2.48
F(6)
␢␢␢␢␢2
2.48
F(6,1)
␢␢␢2.5
2.48
F(6,3,1)
␢0.248
25
F(2)
none SIZE raised
24.86
E(13)
␢␢␢2.486E+001
24.86
E(13,0)
␢␢␢␢2486E002
24.86
E(13,1,3)
␢␢␢24.9E+000
2.48
P '$$$V,99'
␢$2.48
17.9+6I
C(F(6,1))
␢␢17.9␢␢␢6.0
17.9+6I
C(F(6,1),F(6))
␢17.9␢␢␢␢␢6
146
beginning. For instance,
DECLARE A(*) FLOAT;
PUT EDIT (A) (SKIP, 6E(14,5));
causes the contents of the array A to be written out with six values on a line. As many lines as necessary are used.
A format list can contain repeated items and repeated lists. The repetition counts and parameters in a format list are not limited to constants; they can be arbitrary expres
sions, as in the format list
((M)E(14,11K),(N)(A(L),X(5),A(L+1)))
Repetition counts that are not integer constants must be written in parentheses.
An editdirected statement can have more than one pair of data lists and format lists, e.g.
PUT EDIT(A(*,3)) (SKIP,10E(14,DECPT))
(A(*,4)) (SKIP,6E(14,DECPT);
The behavior of input formats applied to various data values is illustrated in Table 13. Except for the Pformat and the Cformat, all of the input formats specify a field width, which is the number of characters to be read from the input stream. (The Pformat and Cformat specify the field width implicitly.) For the Bformats, the Eformat, and the Fformat, the numerical value to be read can have leading and trailing blanks, which are ignored. Linemarks within a field are ignored, so that a field can be split over two lines. For the Fformat and the Eformat, the second parameter, if present, 147
indicates where an implicit decimal point should be inserted if none appears explicitly in the input. For the Fformat, the third parameter specifies scaling to be applied to the input value, while the third parameter of an Eformat is ignored.
The behavior of output formats is shown in Table 14.
The output formats have behavior inverse to the input formats.
The rules are not entirely inverse, however, since the input formats assign meaning to certain fields that cannot be pro
duced by the corresponding output formats. For instance, an output Fformat cannot produce trailing blanks, but an input Fformat can read trailing blanks. Moreover, unscaled output fields always have explicit decimal points unless they are integers, but unscaled input fields may have implicit decimal points. Another difference is that on output, the Aformat and the Bformats need not contain field widths, since a field width can be deduced by converting the output value to character type or to bit type as appropriate.
A remote format can appear in a format list, either as the only item in the list or in combination with other items.
The format item R(ref) is interpreted by evaluating the reference ref, which must be formatvalued, i.e., it must evaluate to the statementname of a FORMATstatement. The contents of that FORMATstatement are then interpreted. For instance, the effect of the statements
GET EDIT(A,B,C) (F(3),R(FF),F(2));
FF:
FORMAT(F(5));
148
is the same as that of the statement
GET EDIT(A,B,C) (F(3),F(5),F(2));
Remote formats are useful when the same format is to be used in a number of different PUT EDIT or GET EDITstatements.
The same format can be used for both input and output.
149
BIBLIOGRAPHY
1. American National Standards Institute, "American National Standard Programming Language PL/I,"
Report ANSI X3. 531976, New York.
2. Beech, D., A Structural View of PL/I, ACM Computing Surveys (2)1, March 1970, pp. 3364.
3. Beech, D., and Marcotty, M., Unfurling the PL/I Standard, SIGPLAN Notices (8)10, October 1973, pp. 1243.
4. Frieburghouse, R., The MULTICS PL/I Compiler, 1969 Fall Joint Computer Conference (35), AFIPS Press, Montvale, New Jersey, pp. 187199.
5. Honeywell Information Systems, Inc., "PL/I Language Manual," Cambridge, Massachusetts, 1974.
6. IBM Corporation, "PL/I Language Specifications,"
Number GY3360032, 1970.
7. Lucas, P., and K. Walk, On the Formal Definition of PL/I, Annual Review in Automatic Programming (6)3, 1969, Pergamon Press, pp. 105181.
8. Pollack, S., and Sterling, T., "A Guide to PL/I,"
Second Edition, Holt, Reinhart and Winston, New York, 1976
9. Radin, G., and Rogoway, H., NPL: Highlights of a New Programming Language, Communications of the ACM (8)1, January 1965, pp. 917.
150
This report was prepared as an account of
Government sponsored work. Neither the
United States, nor the Administration,
nor any person acting on behalf of the
Administration:
A. Makes any warranty or representation,
express or implied, with respect to the
accuracy, completeness, or usefulness of
the information contained in this report,
or that the use of any information,
apparatus, method, or process disclosed
in this report may not infringe privately
owned rights; or
B. Assumes any liabilities with respect to
the use of, or for damages resulting from
the use of any information, apparatus,
method, or process disclosed in this
report.
As used in the above, "person acting on behalf of the Administration" Includes any employee or contractor of the Administration, or
employee of such contractor, to the extent
that such employee or contractor of the
Administration, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Administration, or his
employment with such contractor.
11
EDITORIAL NOTES
The material in this section is not part of the original publication, but was added by the editor in the process of converting the document to a PDF.
For comments, corrections, etc. contact:
Peter_Flass (at) Yahoo (dot) com
Acknowledgement
Thanks are owed to the Internet Archive (www.archive.org) for hosting both the PDF (image) copy of this publication, and also the OCR'd text, which proved remarkably accurate.
[http://www.archive.org/details/pliprogrammingla00abra]
Errata
Page 4 (Example 1) after “THE J-TH LETTER.”, '/*' changed to '*/'.
Page 5 Comment before 'GET_DIGRAM' changed '/*' to '*/ at end.
Page 7 Changed keywrods to keywords in last paragraph.
Page 18 pic 'z,zzz', val 1234, changed to result=1,234.
Page 50 Changed comparision to comparison in last paragraph.
Page 51 Changed conerted to converted in paragraph 2.
Page 54 BIT(x,[le]) changed to BIT(x[, le]).
CEIL changed to read “x must not be complex.”
CHARACTER(sa,[le]) changed to CHARACTER(sa[, le]).
Page 59 VERIFY – The name of the second argument 'ca' is unreadable.
Page.63 'ACON' changed ACOS.
Page 64.. VALID 'varible' should read 'variable'.
Page 67 OFFSET(P,AR) changed to “relative to AR.”
Page 74 previuosly changed to previously in first paragraph.
Page 76 convenient changed to inconvenient in paragraph 3.
Page 113 “reevaluatd” changed to “reevaluated.”
Page 116 Semicolon inserted between “END” and “IF A(I).”
Page 142 Comma after “AGG(3)”.
Page 144 Fixed typos in 'C' format description.
Page 149 GED changed to GET in last paragraph.
NOTES-1
About the Author
Paul W. Abrahams, Sc.D., CCP, is the author of numerous computer books and articles. A consulting computer scientist and past president of the Association for Computing Machinery, he specializes in programming languages, design and implementation of software systems, and technical writing. He received his bachelor's degree in mathematics from the Massachusetts Institute of Technology in 1956 and his doctorate in mathematics there in 1963, studying artificial intelligence under Marvin Minsky and John McCarthy and writing his dissertation on "Machine Verification of Mathematical Proof". He is one of the designers of the first LISP system and also the designer of the CIMS PL/I system, which he developed while a professor at New York University. He also participated in the design of the Software Engineering Design Language (SEDL), developed at the IBM
T.J. Watson Laboratories. In 1995 he was honored as a Fellow of the ACM.
•
adapted from InformIT
http://www.informit.com/authors/bio.aspx?a=33D9A1DB-DAE1-4EC3-BAE5-406F84184012
NOTES-2
Document Outline